摘要:
A method of forming an improved isolation trench between active regions within the semiconductor substrate involves oxidizing unmasked portions of a semiconductor substrate prior to etching an isolation trench into the semiconductor substrate. By oxidizing the unmasked portions of the semiconductor prior to etching, an isolation trench with rounded corners may be formed.
摘要:
A method of making a semiconductor device with improved isolation region to active region topography includes forming a masking layer on a surface of a substrate. A portion of the masking layer is removed to define one or more field regions and at least one trench is formed in the one or more field regions. An oxide layer is formed which substantially fills the trench and then a portion of the oxide layer is removed to leave the oxide layer with a relatively planar surface that is recessed with respect to the masking layer. The masking layer is then removed to expose the substrate. There may be a height differential between the substrate surface and the relatively planer surface of the oxide layer, however, the height differential is substantially less than the thickness of the masking layer.
摘要:
A dielectric material is provided having air gaps purposely formed within the dielectric. The dielectric is deposited, and air gaps formed, between respective interconnect lines. The geometries between interconnect lines is purposely controlled to achieve a large aspect ratio necessary to produce air gaps during CVD of the dielectric. Air gaps exist between interconnects to reduce the line-to-line capacitance, and thereby reduce the propagation delay associated with closely spaced interconnects.
摘要:
A subfield conductive layer is provided, wherein a conductive layer is implanted beneath and laterally adjacent a field dielectric. The subfield conductive layer is placed within the silicon substrate after the field dielectric is formed. The conductive layer represents a buried interconnect which resides between isolated devices. The buried interconnect, however, is formed using high energy ion implant through a field dielectric formed either by LOCOS or shallow trench isolation techniques. The buried interconnect, or conductive layer, resides and electrically connects source and drain regions of two isolated devices.
摘要:
A shallow trench isolation structure is formed which enables the growth of a high quality gate oxide at the trench edges and protects the field oxide from gouging during post-gate processing, such as during the local interconnect etch, thereby allowing the formation of high-quality implanted junctions. Embodiments include forming a photoresist mask directly on a pad oxide layer which, in turn, is formed on a main surface of a semiconductor substrate or an epitaxial layer on a semiconductor substrate. After masking, the substrate is etched to form a trench, an oxide liner is grown in the trench surface, and a polish stop layer is deposited in the trench on the oxide liner and on the pad oxide layer. The polish stop layer is then masked to the trench edges, and the polish stop in the trench is anisotropically etched, to remove the polish stop at the bottom of the trenches leaving a portion overlying the side surfaces and edges of the trench on the oxide liner. The trench is then filled with an insulating material, the insulating material is planarized, and the polish stop over the pad oxide layer is removed by anisotropic etching. Thus, the oxide liner is allowed to grow on the trench edges without the restraint of a polish stop, resulting in a thick, rounded oxide on the trench edges. The portion of the polish stop remaining in the trench and on the oxide liner at the trench edges serves as a protective spacer, protecting the field oxide from erosion during subsequent processing steps.
摘要:
An improved method for planarizing an interlevel dielectric comprising two chemical mechanical polish steps. After an interlevel dielectric containing a topographical valley between a pair of topographical peaks is formed, the dielectric is chemically-mechanically polished in a first polish step at a first force using a first polish pad having a first rigidity to round the sharp dielectric corners or edges that exist at the transition between the peaks and valleys. After the first polish step has rounded the edges, a second polish step is performed with a second polish pad of second rigidity. The second polish pad is more rigid than the first polish pad and the second force is greater than the first. The second polish steps uses a high viscosity slurry to reduce slurry turnover in the regions proximate to the dielectric valleys thereby reducing the chemical etching in the valleys and improving the planarization efficiency.
摘要:
An improved multilevel interconnect structure is provided. The interconnect structure includes pillars spaced from each other across a wafer. The pillars are placed between levels of interconnect or between an interconnect level and a semiconductor substrate. The pillars are spaced from each other by an air gap, such that each conductor within a level of interconnect is spaced by air from one another. Furthermore, each conductor within one level of interconnect is spaced by air from each conductor within another level of interconnect. Air gaps afford a smaller interlevel and intralevel capacitance within the multilevel interconnect structure, and a smaller parasitic capacitance value affords minimal propagation delay and cross-coupling noise of signals sent through the conductors. The air gaps are formed by dissolving a sacrificial dielectric, and the conductors are prevented from bending or warping in regions removed of sacrificial dielectric by employing anodization on not just the upper surfaces of each conductor, but the sidewalls as well. The upper and sidewall anodization provides a more rigid metal conductor structure than if merely the upper or sidewall surfaces were anodized. Accordingly, the pillars can be spaced further apart and yet provide all necessary support to the overlying conductors.
摘要:
A subfield conductive layer is provided, wherein a conductive layer is implanted beneath and laterally adjacent a field dielectric. The subfield conductive layer is placed within the silicon substrate after the field dielectric is formed. The conductive layer represents a buried interconnect which resides between isolated devices. The buried interconnect, however, is formed using high energy ion implant through a field dielectric formed either by LOCOS or shallow trench isolation techniques. The buried interconnect, or conductive layer, resides and electrically connects source and drain regions of two isolated devices.
摘要:
An insulated trench isolation structure with large and small trenches of differing widths is formed in a semiconductor substrate with improved planarity using a simplified reverse source/drain planarization mask. Embodiments include forming large trenches and refilling them with an insulating material which also covers the substrate surface, masking the areas above the large trenches, etching to remove substantially all of the insulating material on the substrate surface and polishing to planarize the insulating material above the large trenches. Small trenches and peripheral trenches surrounding the large trenches are then formed, refilled with insulating material, and planarized. Since the large trenches are formed prior to and separately from the small trenches, etching can be carried out after the formation of a relatively simple planarization mask over only the large trenches, and not the small trenches. The use of a planarization mask with relatively few features having a relatively large geometry avoids the need to create and implement a complex and critical mask, thereby reducing manufacturing costs and increasing production throughput. Furthermore, because the large and small trenches are not polished at the same time, overpolishing is avoided, thereby improving planarity and, hence, the accuracy of subsequent photolithographic processing.
摘要:
An insulated trench isolation structure with large and small trenches of differing widths is formed in a semiconductor substrate using a simplified reverse source/drain planarization mask. Embodiments include forming trenches and refilling them with an insulating material which also covers a main surface of the substrate, polishing to remove an upper portion of the insulating material and to planarize the insulating material above the small trenches, furnace annealing to densify and strengthen the remaining insulating material, masking the insulating material above the large trenches, isotropically etching the insulating material, and polishing to planarize the insulating material. Since the insulating material is partially planarized and strengthened prior to etching, etching can be carried out after the formation of a relatively simple planarization mask over only the large trenches, and not the small trenches. Because the features of the planarization mask are relatively few and have a relatively large geometry, the present invention avoids the need to create and implement a critical mask, enabling production costs to be reduced and manufacturing throughput to be increased.