摘要:
Optical element having an optical surface, which optical surface is adapted to a non-spherical target shape, such that a long wave variation of the actual shape of the optical surface with respect to the target shape is limited to a maximum value of 0.2 nm, wherein the long wave variation includes only oscillations having a spatial wavelength equal to or larger than a minimum spatial wavelength of 10 mm.
摘要:
A method of aligning at least two wave shaping elements, a method of measuring a deviation of an optical surface from a target shape and a measuring apparatus for interferometrically measuring a deviation of an optical surface from a target shape. The method of aligning at least two wave shaping elements, each of which wave shaping elements has a diffractive measurement structure for adapting part of a wave front of incoming light to a respective portion of the target shape, includes: providing a first one of the wave shaping elements with a diffractive alignment structure, arranging the wave shaping elements relative to each other such that each of the diffractive measurement structures is traversed by a separate subset of rays of the incoming light during operation of the measuring apparatus, and aligning the first wave shaping element and a second one of the wave shaping elements relative to each other by evaluating alignment light having consecutively interacted with the diffractive alignment structure and with the second wave shaping element.
摘要:
A method of aligning at least two wave shaping elements, a method of measuring a deviation of an optical surface from a target shape and a measuring apparatus for interferometrically measuring a deviation of an optical surface from a target shape. The method of aligning at least two wave shaping elements, each of which wave shaping elements has a diffractive measurement structure for adapting part of a wave front of incoming light to a respective portion of the target shape, includes: providing a first one of the wave shaping elements with a diffractive alignment structure, arranging the wave shaping elements relative to each other such that each of the diffractive measurement structures is traversed by a separate subset of rays of the incoming light during operation of the measuring apparatus, and aligning the first wave shaping element and a second one of the wave shaping elements relative to each other by evaluating alignment light having consecutively interacted with the diffractive alignment structure and with the second wave shaping element.
摘要:
A method of measuring a deviation of an optical surface from a target shape and a method of manufacturing an optical element. This method of measuring the deviation includes: performing a first interferometric measurement using a first diffractive measurement structure, which is arranged to cover a first area of the optical surface, to provide a first interferometric measurement result, performing a second interferometric measurement using a second diffractive measurement structure, which is arranged to cover a second area of the optical surface different from the first area, to provide a second interferometric measurement result, and determining a deviation of the optical surface from the target shape.
摘要:
A method of aligning at least two wave shaping elements, a method of measuring a deviation of an optical surface from a target shape and a measuring apparatus for interferometrically measuring a deviation of an optical surface from a target shape. The method of aligning at least two wave shaping elements, each of which wave shaping elements has a diffractive measurement structure for adapting part of a wave front of incoming light to a respective portion of the target shape, includes: providing a first one of the wave shaping elements with a diffractive alignment structure, arranging the wave shaping elements relative to each other such that each of the diffractive measurement structures is traversed by a separate subset of rays of the incoming light during operation of the measuring apparatus, and aligning the first wave shaping element and a second one of the wave shaping elements relative to each other by evaluating alignment light having consecutively interacted with the diffractive alignment structure and with the second wave shaping element.
摘要:
Measuring a shape of an optical surface (14) of a test object (12) includes: providing an interferometric measuring device (16) generating a measurement wave (18); arranging the measuring device (16) and the test object (12) consecutively at different measurement positions relative to each other, such that different regions (20) of the optical surface (14) are illuminated by the measurement wave (18); measuring positional coordinates of the measuring device (16) at the different measurement positions in relation to the test object (12); obtaining surface region measurements by interferometrically measuring the wavefront of the measurement wave (18) after interaction with the respective region (20) of the optical surface (14) using the measuring device (16) in each of the measurement positions; and determining the actual shape of the optical surface (14) by computationally combining the surface region measurements based on the measured positional coordinates of the measuring device (16) at each of the measurement positions.
摘要:
Optical element having an optical surface, which optical surface is adapted to a non-spherical target shape, such that a long wave variation of the actual shape of the optical surface with respect to the target shape is limited to a maximum value of 0.2 nm, wherein the long wave variation includes only oscillations having a spatial wavelength equal to or larger than a minimum spatial wavelength of 10 mm.
摘要:
A method of manufacturing an optical component comprising a substrate and a mounting frame with plural contact portions disposed at predetermined distances from each other is provided. The method comprises providing a measuring frame separate from the mounting frame for mounting the substrate, which measuring frame comprises a number of contact portions equal to a number of the contact portions of the mounting frame, wherein respective distances between the contact portions of the measuring frame are substantially equal to the corresponding distances between those of the mounting frame, measuring a shape of the optical surface of the substrate, while the substrate is mounted on the measuring frame, and mounting the substrate on the mounting frame such that the contact portions of the mounting frame are attached to the substrate at regions which are substantially the same as contact regions at which the substrate was attached to the measuring frame.
摘要:
A method of manufacturing an optical component comprising a substrate and a mounting frame with plural contact portions disposed at predetermined distances from each other is provided. The method comprises providing a measuring frame separate from the mounting frame for mounting the substrate, which measuring frame comprises a number of contact portions equal to a number of the contact portions of the mounting frame, wherein respective distances between the contact portions of the measuring frame are substantially equal to the corresponding distances between those of the mounting frame, measuring a shape of the optical surface of the substrate, while the substrate is mounted on the measuring frame, and mounting the substrate on the mounting frame such that the contact portions of the mounting frame are attached to the substrate at regions which are substantially the same as contact regions at which the substrate was attached to the measuring frame.
摘要:
A method of aligning at least two wave shaping elements, a method of measuring a deviation of an optical surface from a target shape and a measuring apparatus for interferometrically measuring a deviation of an optical surface from a target shape. The method of aligning at least two wave shaping elements, each of which wave shaping elements has a diffractive measurement structure for adapting part of a wave front of incoming light to a respective portion of the target shape, includes: providing a first one of the wave shaping elements with a diffractive alignment structure, arranging the wave shaping elements relative to each other such that each of the diffractive measurement structures is traversed by a separate subset of rays of the incoming light during operation of the measuring apparatus, and aligning the first wave shaping element and a second one of the wave shaping elements relative to each other by evaluating alignment light having consecutively interacted with the diffractive alignment structure and with the second wave shaping element.