摘要:
Provided are ultraviolet (UV)-curable polyols and polyurethane compositions made by reacting the inventive polyol with an isocyanate. The inventive ultraviolet (UV)-curable polyol is made by co-polymerizing an alkylene oxide, an unsaturated carboxylic acid or anhydride and a hydroxy functional compound in the presence of a double metal cyanide (DMC) complex catalyst such that the polyol has an ultra-low level of unsaturation. The inventive polyols may be used to produce prepolymers, which in turn may be useful in making thin films which in turn may provide such items as medical examination gloves and scientific gloves. The inventive ultraviolet (UV)-curable polyurethane compositions may also find use in or as coatings, adhesives, sealants, elastomers and the like.
摘要:
Ultraviolet (UV)-curable polyurethane compositions are provided which are made by reacting an isocyanate with an ultraviolet (UV)-curable polyol that is made by co-polymerizing an alkylene oxide, an unsaturated carboxylic acid or anhydride and a hydroxy functional compound and which has an ultra-low level of unsaturation. The inventive ultraviolet (UV)-curable polyurethane compositions may find use in or as coatings, adhesives, sealants, elastomers and the like.
摘要:
The present invention provides polyurethane foams and elastomers made with an alkoxylated vegetable oil hydroxylate replacing at least a portion of the typically used petroleum-based polyol(s). Also provided are processes for making the inventive foams and elastomers and for making alkoxylated vegetable oil hydroxylates. The alkoxylated vegetable oil hydroxylates are environmentally-friendly, bio-based polyols which advantageously also offer the potential of improved hydrophobicity in polyurethane foams and elastomers. The inventive polyurethane foams and elastomers may find use in a wide variety of products such as automobile interior parts, polyurethane structural foams, floor coatings and athletic running tracks.
摘要:
The present invention relates to a polyether carbonate polyol made by copolymerizing a starter molecule with carbon dioxide, at a pressure ranging from about 10 psia to about 2,000 psia, and an alkylene oxide, at a temperature ranging from about 50° C. to about 190° C. and in the presence of from about 0.001 Wt. % to about 0.2 wt. % of a substantially non-crystalline double metal cyanide (DMC) catalyst, wherein the polyol has an incorporated carbon dioxide content of from about 1 wt. % to about 40 wt. %, wherein the ratio of cyclic carbonate by-product to total carbonate is less than about 0.3 and wherein the weight percentages are based on the weight of the polyol. The inventive polyether carbonate polyols may find use in producing polyurethane foams, elastomers, coatings, sealants and adhesives with improved properties.
摘要:
The present invention relates to a process for the preparation of rigid foams comprising reacting a polyisocyanate component with an isocyanate-reactive component in the present of a blowing agent. Suitable isocyanate-reactive components for the presently claimed invention comprises polyether polyols having an OH number of from 200 to 800 and containing from 3 to 8 hydroxyl groups wherein the level of alkalinity present in the polyether polyol is equivalent to a hydroxide ion level of from about 0.006% to about 0.21% by weight.
摘要:
A process for making a thermoplastic polyurethane material comprising the steps of casting an NCO-terminated prepolymer with 1,4-butanediol to form a casting composition; extruding the casting composition to form at least one strand of a polyurethane elastomer; pelletizing the at least one strand of said polyurethane elastomer to form at least one pellet; and processing the at least one pellet to form a thermoplastic article.
摘要:
In one or more embodiments, the present invention provides a novel approach to the addition of plasticizers for softening TPUs, i.e., lowering the durometer and the melt viscosity. This approach involves incorporating bonded sulfonate groups with quaternary ammonium counterions into the TPU. In one or more embodiments of the present invention, the softening of TPU is achieved by incorporating an ionic diol, such as N,N-bis (2-hydoxyethyl)-2-aminoethane-sulfonic acid (BES), coupled with various bulky alkyl ammonium cations, during the chain extension step of the TPU synthesis. It is believed that that steric hindrance of the bulky quaternary ammonium groups weakens the dipole-dipole interactions of the sulfonate groups and/or lowers the crystallinity of the hard block, thereby creating additional free volume that softens the polymer and lowers the melt viscosity.
摘要:
A method of making a polyether-polydialkylsiloxane block copolymer is provided. The method comprises providing a mixture comprising at least one alkylene oxide and at least one silanol-terminated polydialkylsiloxane; and polymerizing the mixture in the presence of a double metal cyanide complex catalyst, and optionally in the presence of an aprotic solvent and/or an antioxidant. A polyether-polydialkylsiloxane block copolymer having a molecular weight of 150-50,000 g/mole and having a polydispersity index of 1.0 to 1.5 made by the above method is also provided.
摘要:
This invention relates to a one-stage process for the production of polyoxyalkylene containing polyols having equivalent weights of about 150 to about 6000 and functionalities of about 2 to 8. The process comprises (1) mixing (a) an organic compound having a hydroxyl functionality of about 2 to about 8 and an equivalent weight of about 35 to about 575, with (b) a hydroxyl functional compound having an equivalent weight of about 100 to about 6000 and a functionality of about 2 to 8; and (2) alkoxylating the mixture with (c) one or more alkylene oxides, in the presence of (d) one or more double metal cyanide catalysts. Suitable compounds to be used as (a) the organic compound having a hydroxyl functionality of about 2 to about 8 and an equivalent weight of about 35 to about 575 in the present invention include bisphenol-A, Bisphenol TMC, tetrabromobisphenol A, and novolak phenolic resins.
摘要:
Clear, amine-initiated polyether polyols are made by epoxidizing an amine in the presence of an alkali metal hydroxide catalyst. By reducing the amount of catalyst used during the polyol synthesis and by adding the catalyst after between 5 and 30% of the total amount of at least one alkylene oxide has been added, after lactic acid neutralization, gives a short chain polyol that has foam processing characteristics similar to the conventional sulfuric acid neutralized polyol. The polyols produced in this manner are particularly useful for the production of polyurethane and polyisocyanurate foams.