Abstract:
In a multiplexed assay method carried out in solution, wherein the solution contains nucleic acid targets and, wherein several different types of oligonucleotide probes, each type having a different sequence in a region designated as a target binding domain, are used to detect the nucleic acid targets, said assay method including a method for increasing the effective concentration of the nucleic acid targets at the surface of a bead to which the oligonucleotide probes are bound, by one or more of the following steps:adjusting assay conditions so as to increase the effective concentration of the targets available for binding to the probes, by one or more of the following: (i) selecting a particular probe density on the surface of the bead; (ii) selecting a solution having an ionic strength greater than a threshold; (ii) selecting a target domain of a size less than a threshold; or (iii) selecting target domains within a specified proximity to a terminal end of the targets.
Abstract:
Disclosed are methods of multiplexed analysis of oligonucleotides in a sample, including: methods of probe and target “engineering”, as well as methods of assay signal analysis relating to the modulation of the probe-target affinity constant, K by a variety of factors including the elastic properties of target strands and layers of immobilized (“grafted”) probes; and assay methodologies relating to: the tuning of assay signal intensities including dynamic range compression and on-chip signal amplification; the combination of hybridization-mediated and elongation-mediated detection for the quantitative determination of abundance of messages displaying a high degree of sequence similarity, including, for example, the simultaneous determination of the relative expression levels, and identification of the specific class of, untranslated AU-rich subsequences located near the 3′ terminus of mRNA; and a new method of subtractive differential gene expression analysis which requires only a single color label.
Abstract:
The invention provides methods and processes for the identification of polymorphisms at one ore more designated sites, without interference from non-designated sites located within proximity of such designated sites. Probes are provided capable of interrogation of such designated sites in order to determine the composition of each such designated site. By the methods of this invention, one ore more mutations within the CFTR gene and the HLA gene complex can be identified.
Abstract:
Systems and methods are provided the autocentering, autofocusing, acquiring, decoding, aligning, analyzing and exchanging among various parties, images, where the images are of arrays of signals associated with ligand-receptor interactions, and more particularly, ligand-receptor interactions where a multitude of receptors are associated with microparticles or microbeads. The beads are encoded to indicate the identity of the receptor attached, and therefore, an assay image and decoding image are aligned to effect the decoding. The images or data extracted from such images can be exchanged between de-centralized assay locations and a centralized location where the data are analyzed to indicate assay results. Access to data can be restricted to authorized parties in possession of certain encoding information, so as to preserve confidentiality.
Abstract:
Disclosed are methods and algorithms (and their implementation) supporting the automated analysis and interactive review and refinement (“redaction”) of the analysis within an integrated software environment, for automated allele assignments. The implementation, preferably with a software system and a program referred to as the Automated Allele Assignment (“AAA”) program, provides a multiplicity of functionalities including: data management by way of an integrated interface to a portable database to permit visualizing, importing, exporting and creating customizable summary reports; system configuration (“Set-up”) including user authorization, training set analysis and probe masking; Pattern Analysis including string matching and probe flipping; and Interactive Redaction combining real-time database computations and “cut-and-paste” editing, generating “warning” statements and supporting annotation. It also includes a thresholding function, a method of setting thresholds, a method of refining thresholds by matching an experimental binary string (“reaction pattern”) setting for that probe, probe masking of signals produced by probes which do not contribute significantly to discriminating among alleles.
Abstract:
The present invention provides a method for the generation of novel libraries of encoded magnetic particles from sub-libraries of by the generation of novel sub-libraries of magnetic nanoparticles and encoded particles. The sub-libraries are functionalized on demand are useful in the formation of arrays. The present invention is especially useful for performing multiplexed (parallel) assays for qualitative and/or quantitative analysis of binding interactions of a number of analyte molecules in a sample.
Abstract:
The present invention relates to a systematic process for the creation of functionally organized, spatially patterned assemblies polymer-microparticle composites including the AC electric field-mediated assembly of patterned, self supporting organic (polymeric) films and organic (polymeric)-microparticle composite films of tailored composition and morphology; the present invention further relates to the incorporation of said assemblies into other structures. The present invention. also relates to the application of such functional assemblies in materials science and biology. Additional areas of application include sensors, catalysts, membranes, micro-reactors, smart materials. Miniaturized format for generation of multifunctional thin films. Provides a simple set-up to synthesize thin films of tailored composition and morphology:
Abstract:
Disclosed is a registry for candidate transfusion donors, which invokes an inventory management policy to create and actively manage lists of candidate donors in order to minimize imbalances between demand and supply across multiple regions and across multiple categories of donors and recipients. Together with a genotyping laboratory, the registry does targeted recruitment of prospective donors who are typed for a set of genetic markers relating to clinically relevant antigens including mutations of Human Erythrocyte Antigens (HEA), genetic variants of Rh, and possibly additional antigens such as HLA and HPA. The registry monitors incoming demand for transfusion antigen genotypes, preferably stratify the demand into a set of categories representing stable subpopulations, and will apply strategies, disclosed herein, to tune the composition of candidate donor lists to match the demand, thereby avoiding excess, and unnecessary, typing of candidate donors.
Abstract:
Described are methods of assay design and assay image correction, useful for multiplexed genetic screening for mutations and polymorphisms, including CF-related mutants and polymorphs, using an array of probe pairs (in one aspect, where one member is complementary to a particular mutant or polymorphic allele and the other member is complementary to a corresponding wild type allele), with probes bound to encoded particles (e.g., beads) wherein the encoding allows identification of the attached probe. The methods relate to avoiding cross-hybridization by selection of probes and amplicons, as well as separation of reactions of certain probes and amplicons where a homology threshold is exceeded. Methods of correcting a fluorescent image using a background map, where the particles also contain an optical encoding system, are also disclosed.