摘要:
A method for producing metal nanoparticles that when associated with an analyte material will generate an amplified SERS spectrum when the analyte material is illuminated by a light source and a spectrum is recorded. The method for preparing the metal nanoparticles comprises the steps of (i) forming a water-in-oil microemulsion comprising a bulk oil phase, a dilute water phase, and one or more surfactants, wherein the water phase comprises a transition metal ion; (ii) adding an aqueous solution comprising a mild reducing agent to the water-in-oil microemulsion; (iii) stirring the water-in-oil microemulsion and aqueous solution to initiate a reduction reaction resulting in the formation of a fine precipitate dispersed in the water-in-oil microemulsion; and (iv) separating the precipitate from the water-in-oil microemulsion.
摘要:
A vacuum microelectronic device (10,40) emits electrons (37) from surfaces of nanotube emitters (17, 18). Extracting electrons from the surface of each nanotube emitter (17) results is a small voltage variation between each emitter utilized in the device (10, 40). Consequently, the vacuum microelectronic device (10,40) has a more controllable turn-on voltage and a consistent current density from each nanotube emitter (17,18).
摘要:
This invention relates to semiconductor devices, microelectronic devices, micro electro mechanical devices, microfluidic devices, photonic devices, and more particularly to a lithographic template, a method of forming the lithographic template and a method for forming devices with the lithographic template. The lithographic template (10) is formed having a substrate (12), a transparent conductive layer (16) formed on a surface (14) of the substrate (12) by low pressure sputtering to a thickness that allows for preferably 90% transmission of ultraviolet light therethrough, and a patterning layer (20) formed on a surface (18) of the transparent conductive layer (16). The template (10) is used in the fabrication of a semiconductor device (30) for affecting a pattern in device (30) by positioning the template (10) in close proximity to semiconductor device (30) having a radiation sensitive material formed thereon and applying a pressure to cause the radiation sensitive material to flow into the relief image present on the template. Radiation is then applied through the template so as to cure portions of the radiation sensitive material and define the pattern in the radiation sensitive material. The template (10) is then removed to complete fabrication of semiconductor device (30).
摘要:
A field emission device (100) includes an electron emitter structure (105) having a deuteride layer (108), which defines a surface (109) of electron emitter structure (105). Deuteride layer (108) is disposed upon an electron emitter (106), which is made from a metal. Deuteride layer (108) is a deuteride of the metal from which electron emitter (106) is made. A method for conditioning field emission device (100) includes the step of providing a contaminated cathode structure (137), which has a contaminated emitter structure (138). The method further includes the step of causing deuterium to react with a metal oxide layer (140) of emitter structure (138), so that the deuterium replaces the oxygen of metal oxide layer (140).
摘要:
A field emission display (100) includes an electron emitter structure (105) designed to emit an emission current (134), a phosphor (126) disposed to receive at an electron-receiving surface (127) emission current (134), and a multi-layered barrier structure (125) disposed on electron-receiving surface (127) of phosphor (126). Multi-layered barrier structure (125) of the preferred embodiment includes an aluminum layer (128) disposed on electron-receiving surface (127) of phosphor (126) and a carbon layer (129) disposed on aluminum layer (128).
摘要:
The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.
摘要:
An optical waveguide structure (10) is provided. The optical waveguide structure (10) has a monocrystalline substrate (12), an amorphous interface layer (14) overlying the monocrystalline substrate (12) and an accommodating buffer layer (16) overlying the amorphous interface layer (14). An optical waveguide layer (20) overlies the accommodating buffer layer (16).
摘要:
A method for scrubbing and passivating an anode plate (100) of a field emission display (120) includes the steps of providing a scrubbing passivation material (127); imparting to scrubbing passivation material (127) an energy selected to cause removal of a contamination layer (123, 117) from anode plate (100); causing scrubbing passivation material (127) to be received by contamination layer (123, 117), thereby removing contamination layer (123, 117); and depositing at least a portion of scrubbing passivation material (127) on anode plate (100), thereby forming a passivation layer (129).
摘要:
A method for forming an electron emissive film (200, 730, 830) includes the steps of: (i) evaporating a graphite source (120, 620) in a cathodic arc deposition apparatus (100, 600) to create a carbon plasma (170, 670), (ii) applying a potential difference between the graphite source (120, 620) and a glass or silicon deposition substrate (130, 630, 710, 810) for accelerating the carbon plasma (170, 670) toward the deposition substrate (130, 630, 710, 810), (iii) providing a working gas within the cathodic arc deposition apparatus (100, 600), and (ii) depositing the carbon plasma (170, 670) onto the deposition substrate (130, 630, 710, 810).
摘要:
This invention relates to semiconductor devices, microelectronic devices, micro electro mechanical devices, microfluidic devices, photonic devices, and more particularly to a lithographic template, a method of forming the lithographic template and a method for forming devices with the lithographic template. The lithographic template (10) is formed having a substrate (12), a transparent conductive layer (16) formed on a surface (14) of the substrate (12) by low pressure sputtering to a thickness that allows for preferably 90% transmission of ultraviolet light therethrough, and a patterning layer (20) formed on a surface (18) of the transparent conductive layer (16). The template (10) is used in the fabrication of a semiconductor device (30) for affecting a pattern in device (30) by positioning the template (10) in close proximity to semiconductor device (30) having a radiation sensitive material formed thereon and applying a pressure to cause the radiation sensitive material to flow into the relief image present on the template. Radiation is then applied through the template so as to cure portions of the radiation sensitive material and define the pattern in the radiation sensitive material. The template (10) is then removed to complete fabrication of semiconductor device (30).