摘要:
Embodiments of the current invention describe methods of processing a semiconductor substrate that include applying a zincating solution to the semiconductor substrate to form a zinc passivation layer on the titanium-containing layer, the zincating solution comprising a zinc salt, FeCl3, and a pH adjuster.
摘要:
Embodiments of the current invention describe methods of processing a semiconductor substrate that include applying a zincating solution to the semiconductor substrate to form a zinc passivation layer on the titanium-containing layer, the zincating solution comprising a zinc salt, FeCl3, and a pH adjuster.
摘要:
Embodiments of the current invention describe methods of processing a semiconductor substrate that include applying a zincating solution to the semiconductor substrate to form a zinc passivation layer on the titanium-containing layer, the zincating solution comprising a zinc salt, FeCl3, and a pH adjuster.
摘要:
Embodiments of the current invention describe methods of processing a semiconductor substrate that include applying a zincating solution to the semiconductor substrate to form a zinc passivation layer on the titanium-containing layer, the zincating solution comprising a zinc salt, FeCl3, and a pH adjuster.
摘要:
Embodiments of the current invention describe methods of processing a semiconductor substrate that include applying a zincating solution to the semiconductor substrate to form a zinc passivation layer on the titanium-containing layer, the zincating solution comprising a zinc salt, FeCl3, and a pH adjuster.
摘要:
Embodiments of the current invention describe methods of processing a semiconductor substrate that include applying a zincating solution to the semiconductor substrate to form a zinc passivation layer on the titanium-containing layer, the zincating solution comprising a zinc salt, FeCl3, and a pH adjuster.
摘要:
Methods for forming a NiO film on a substrate for use with a resistive switching memory device are presenting including: preparing a nickel ion solution; receiving the substrate, where the substrate includes a bottom electrode, the bottom electrode utilized as a cathode; forming a Ni(OH)2 film on the substrate, where the forming the Ni(OH)2 occurs at the cathode; and annealing the Ni(OH)2 film to form the NiO film, where the NiO film forms a portion of a resistive switching memory element. In some embodiments, methods further include forming a top electrode on the NiO film and before the forming the Ni(OH)2 film, pre-treating the substrate. In some embodiments, methods are presented where the bottom electrode and the top electrode are a conductive material.
摘要:
Methods for treating a substrate in preparation for a subsequent process are presented, the method including: receiving the substrate, the substrate comprising conductive regions and dielectric regions; and applying an oxidizing agent to the substrate in a manner so that the dielectric regions are oxidized to become increasingly hydrophilic to enable access to the conductive regions in the subsequent process, wherein the dielectric region is treated to a depth in the range of approximately 1 to 5 atomic layers. In some embodiments, methods further include processing the substrate, wherein processing the conductive regions are selectively enhanced. In some embodiments, the oxidizing agent includes atmospheric pressure plasma and UV radiation.
摘要:
Methods for substrate processing are described. The methods include forming a material layer on a substrate. The methods include selecting constituents of a molecular masking layer (MML) to remove an effect of variations in the material layer as a result of substrate processing. The methods include normalizing the surface characteristics of the material layer by selectively depositing the MML on the material layer.
摘要:
Methods of modifying a patterned semiconductor substrate are presented including: providing a patterned semiconductor substrate surface including a dielectric region and a conductive region; and applying an amphiphilic surface modifier to the dielectric region to modify the dielectric region. In some embodiments, modifying the dielectric region includes modifying a wetting angle of the dielectric region. In some embodiments, modifying the wetting angle includes making a surface of the dielectric region hydrophilic. In some embodiments, methods further include applying an aqueous solution to the patterned semiconductor substrate surface. In some embodiments, the conductive region is selectively enhanced by the aqueous solution. In some embodiments, methods further include providing the dielectric region formed of a low-k dielectric material. In some embodiments, applying the amphiphilic surface modifier modifies an interaction of the low-k dielectric region with a subsequent process.