摘要:
A method for fabricating semiconductor memory cells such as dynamic random access memory (DRAM) and ferroelectric random access memory (FRAM) with improved contact between the capacitor electrode and the underneath device area. It includes the following main steps of: (1) forming a first dielectric layer on a wafer surface; (2) forming at least one through opening in the first dielectric layer; (3) forming a ruthenium based plug in the through opening; and (4) forming a capacitor in contact with the ruthenium based plug. The ruthenium based plug can be made of ruthenium metal, conductive ruthenium oxide, or a stack of conductive ruthenium oxide and ruthenium metal. The method allows the memory cell to be made without the need for a barrier, which is required to protect the storage electrode from reacting with Si atoms during the fabrication process.
摘要:
The memory-storage node of the present invention includes a semiconductor substrate, a first insulating layer over the substrate, a conductive layer formed within the first insulating layer, and a barrier layer formed over the conductive layer. The barrier layer, preferably contains a ruthenium-based material, is conductively coupled with the conductive layer. The memory-storage node further includes a first electrode over the barrier layer, a dielectric layer over the first electrode, and a second electrode over the dielectric layer. The method for fabricating the memory storage-node of the present invention provides a semiconductor substrate and forms a first insulating layer on the substrate. A first opening is formed in the first insulating layer and a conductive layer is provided in the first opening. A barrier layer is then formed in the first opening and over the conductive layer. The barrier layer, preferably contains a ruthenium-based material, is conductively coupled with the conductive layer. A second insulating layer is formed over the first insulating layer and the barrier layer. A second opening is formed in the second insulating layer to expose a portion of the underlying barrier layer. A first electrode is formed in the second opening and a dielectric layer is formed on the second insulating layer and the first electrode. Finally, a second electrode is formed over the dielectric layer.
摘要:
The memory-storage node of the present invention includes a semiconductor substrate, a first insulating layer over the substrate, a conductive layer formed within the first insulating layer, and a barrier layer formed over the conductive layer. The barrier layer, preferably contains a ruthenium-based material, is conductively coupled with the conductive layer. The memory-storage node further includes a first electrode over the barrier layer, a dielectric layer over the first electrode, and a second electrode over the dielectric layer. The method for fabricating the memory storage-node of the present invention provides a semiconductor substrate and forms a first insulating layer on the substrate. A first opening is formed in the first insulating layer and a conductive layer is provided in the first opening. A barrier layer is then formed in the first opening and over the conductive layer. The barrier layer, preferably contains a ruthenium-based material, is conductively coupled with the conductive layer. A second insulating layer is formed over the first insulating layer and the barrier layer. A second opening is formed in the second insulating layer to expose a portion of the underlying barrier layer. A first electrode is formed in the second opening and a dielectric layer is formed on the second insulating layer and the first electrode. Finally, a second electrode is formed over the dielectric layer.
摘要:
A complementary metal-oxide-semiconductor (CMOS) device comprising a substrate, a first type of metal-oxide-semiconductor (MOS) transistor, a second type of MOS transistor, an etching stop layer, a first stress layer and a second stress layer is provided. The substrate has a first active region and a second active region. The first active region is isolated from the second active region through an isolation structure. The first type of MOS transistor is disposed in the first active region of the substrate; the second type of MOS transistor is disposed in the second active region of the substrate. The etching stop layer covers conformably the first type of MOS transistor, the second type of MOS transistor and the isolation structure. The first stress layer is disposed on the etching stop layer in the first active region and the second stress layer is disposed on the etching stop layer in the second active region.
摘要:
A method for increasing the removal rate of a photoresist layer is provided. The method includes performing a pre-treatment of a substrate, such as a plasma process, before forming the photoresist layer. The method can be applied to the fabrication of semiconductor devices for increasing the removal rate of the photoresist layer.
摘要:
A patterning method is provided. The method includes the steps of firstly forming an underlying layer, a silicon rich organic layer, and a photoresist layer on the material layer in succession. The photoresist layer is patterned, and the silicon rich organic layer is etched using the photoresist layer as a mask. Then, an etching process is performed to pattern the underlying layer using the silicon rich organic layer as a mask. Reactive gases adopted in the etching process include a passivation gas, an etching gas, and a carrier gas. The passivation gas forms a passivation layer at side walls of the patterned underlying layer during the etching process. After that, the material layer is etched using the underlying layer as a mask to form an opening in material layer. Finally, the underlying layer is removed.
摘要:
A complementary metal-oxide-semiconductor (CMOS) device comprising a substrate, a first type of metal-oxide-semiconductor (MOS) transistor, a second type of MOS transistor, an etching stop layer, a first stress layer and a second stress layer is provided. The substrate has a first and a second active region. The first active region is isolated from the second active region through an isolation structure. The first type of MOS transistor is disposed in the first active region of the substrate and the second type of MOS transistor is disposed in the second active region of the substrate. The etching stop layer covers conformably the first type of MOS transistor, the second type of MOS transistor and the isolation structure. The first stress layer is disposed on the etching stop layer in the first active region and the second stress layer is disposed on the etching stop layer in the second active region.
摘要:
A method for increasing the removal rate of a photoresist layer used as an ion implant mask. The method includes performing a pre-treatment of a substrate, such as a plasma process, before forming the photoresist layer. The method can be applied to the fabrication of semiconductor devices for increasing the removal rate of the photoresist layer.
摘要:
A patterning method is provided. In the patterning method, a film is formed on a substrate and a pre-layer information is measured. Next, an etching process is performed to etch the film. The etching process includes a main etching step, an etching endpoint detection step, an extension etching step and an over etching step. An extension etching time for performing the extension etching step is set within 10 seconds based on a predetermined correlation between an extension etching time and the pre-layer information, so as to achieve a required film profile.
摘要:
A method of forming a pattern for a semiconductor device, in which, two hard masks are included between an upper spin-on glass (SOG) layer and a lower etching target layer. The SOG layer is etched twice through two different patterned photoresists respectively to form a fine pattern in the SOG layer. Subsequently, an upper hard mask is etched by utilizing the patterned SOG layer as an etching mask so the upper patterned hard mask can have a fine pattern with a sound shape and enough thickness. A lower hard mask and the etching target layer are thereafter etched by utilizing the upper patterned hard mask as an etching mask, so portions of the etching target layer that are covered by the two hard masks can be well protected from the etching processes.