摘要:
A complementary metal-oxide-semiconductor (CMOS) device comprising a substrate, a first type of metal-oxide-semiconductor (MOS) transistor, a second type of MOS transistor, an etching stop layer, a first stress layer and a second stress layer is provided. The substrate has a first active region and a second active region. The first active region is isolated from the second active region through an isolation structure. The first type of MOS transistor is disposed in the first active region of the substrate; the second type of MOS transistor is disposed in the second active region of the substrate. The etching stop layer covers conformably the first type of MOS transistor, the second type of MOS transistor and the isolation structure. The first stress layer is disposed on the etching stop layer in the first active region and the second stress layer is disposed on the etching stop layer in the second active region.
摘要:
A complementary metal-oxide-semiconductor (CMOS) device comprising a substrate, a first type of metal-oxide-semiconductor (MOS) transistor, a second type of MOS transistor, an etching stop layer, a first stress layer and a second stress layer is provided. The substrate has a first and a second active region. The first active region is isolated from the second active region through an isolation structure. The first type of MOS transistor is disposed in the first active region of the substrate and the second type of MOS transistor is disposed in the second active region of the substrate. The etching stop layer covers conformably the first type of MOS transistor, the second type of MOS transistor and the isolation structure. The first stress layer is disposed on the etching stop layer in the first active region and the second stress layer is disposed on the etching stop layer in the second active region.
摘要:
A method of forming a metal-oxide-semiconductor (MOS) device is provided. The method includes the following steps. First, a conductive type MOS transistor is formed on a substrate. Then, a first etching stop layer is formed over the substrate to cover conformably the conductive type MOS transistor. Thereafter, a stress layer is formed over the first etching stop layer. Then, a second etching stop layer is formed over the stress layer.
摘要:
A metal-oxide-semiconductor (MOS) transistor comprising a conductive type MOS transistor, a first etching stop layer, a stress layer and a second etching stop layer is provided. The conductive MOS transistor is disposed on a substrate. The first etching stop layer is covered conformably the conductive type MOS transistor. Furthermore, the stress layer is disposed on the first etching stop layer. The second etching stop layer is disposed on the stress layer.
摘要:
A method of forming a metal-oxide-semiconductor (MOS) device is provided. The method includes the following steps. First, a conductive type MOS transistor is formed on a substrate. Then, a first etching stop layer is formed over the substrate to cover conformably the conductive type MOS transistor. Thereafter, a stress layer is formed over the first etching stop layer. Then, a second etching stop layer is formed over the stress layer.
摘要:
A complementary metal-oxide-semiconductor (CMOS) device comprising a substrate, a first type of metal-oxide-semiconductor (MOS) transistor, a second type of MOS transistor, an etching stop layer, a first stress layer and a second stress layer is provided. The substrate has a first and a second active region. The first active region is isolated from the second active region through an isolation structure. The first type of MOS transistor is disposed in the first active region of the substrate and the second type of MOS transistor is disposed in the second active region of the substrate. The etching stop layer covers conformably the first type of MOS transistor, the second type of MOS transistor and the isolation structure. The first stress layer is disposed on the etching stop layer in the first active region and the second stress layer is disposed on the etching stop layer in the second active region.
摘要:
A method of manufacturing a metal gate is provided. The method includes providing a substrate. Then, a gate dielectric layer is formed on the substrate. A multi-layered stack structure having a work function metal layer is formed on the gate dielectric layer. An O2 ambience treatment is performed on at least one layer of the multi-layered stack structure. A conductive layer is formed on the multi-layered stack structure.
摘要:
A method for fabricating a metal-oxide-semiconductor field-effect transistor includes the following steps. Firstly, a substrate is provided. A gate structure, a first spacer, a second spacer and a source/drain structure are formed over the substrate. The second spacer includes an inner layer and an outer layer. Then, a thinning process is performed to reduce the thickness of the second spacer, thereby retaining the inner layer of the second spacer. After a stress film is formed on the inner layer of the second spacer and the source/drain structure, an annealing process is performed. Afterwards, the stress film is removed.
摘要:
A method for fabricating a metal gate includes the following steps. First, a substrate having an interfacial dielectric layer above the substrate is provided. Then, a gate trench having a barrier layer is formed in the interfacial dielectric layer. A source layer is disposed above the barrier layer. Next, a process is performed to have at least one element in the source layer move into the barrier layer. Finally, the barrier layer is removed and a metal layer fills up the gate trench.
摘要:
A method for forming a transistor having a metal gate is provided. A substrate is provided first. A transistor is formed on the substrate. The transistor includes a high-k gate dielectric layer, an oxygen containing dielectric layer disposed on the high-k gate dielectric layer, and a dummy gate disposed on the oxygen containing dielectric layer. Then, the dummy gate and the patterned gate dielectric layer are removed. Lastly, a metal gate is formed and the metal gate directly contacts the high-k gate oxide.