Abstract:
A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves electrochemically exchanging a mediating element on a substrate with a noble metal film by alternatingly sweeping potential in forward and reverse directions for a predetermined number of times in an electrochemical cell. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis.
Abstract:
The present invention is to provide a method for producing a core-shell catalyst for fuel cells, which is configured to facilitate shell deposition by, in the production of the core-shell catalyst for fuel cells, decreasing an oxidation-reduction potential applied for shell deposition lower than ever before. Disclosed is a method for producing a core-shell catalyst for fuel cells, wherein the method comprises: a first refluxing step of refluxing a mixture A containing a core fine particle-supported carbon, alcohol and water; a mixing step of preparing a mixture B by, after the first refluxing step, mixing the mixture A having a temperature that is lower than that in the first refluxing step with a shell material; and a second refluxing step of refluxing the mixture B.
Abstract:
The present particles, compositions and methods are Nb-oxide embedded carbon based electrocatalysts. In one embodiment, a carbon based support particle is provided having NbOx (0 ≤x≤2 is average value of amorphous low-oxidation-state niobium oxides) and a catalytically active metal deposited thereupon. In one embodiment, a method is provided of embedding niobium oxides into pores of carbon black, which involves filling about 4 nm pores on Ketjenblack EC 600JD (KB) with Nb(V) ethoxide by sonication, and decomposing/reducing dried Nb(V) precursor in carbon to ≤5 nm particles of NbOx. The embedded, small metal or metal oxide particles over porous carbon surface may find applications in fuel cell and battery technologies. The present compositions can be used for fabricating active and durable catalysts for oxygen reduction reaction (ORR).
Abstract:
Highly effective, standalone gas-diffusion electrodes (GDEs) and the methods for their manufacture and test are disclosed, Nanocataiysis are directly bonded on a gas diffusion layer, so that the integrity of the catalyst layer holds without polymer electrolyte membrane, facilitating minimization of electronic, prottmtc, and diffusion resistances in the catalyst layer. The devised embodiments provide examples showing a facile hanging-strip method for testing the standalone GDEs in a solution electrochemical cell, which removes the mA-cm−2-scale mass transport limited currents on rotating disk electrodes to allow studies of reaction kinetics on single electrode over sufficiently wide current ranges (up to A cm−2) without mass transport limitation. Ultralow-Pi-content GDEs are fabricated as the cathode for hydrogen evolution in water eiectrolyzers and as the anode for hydrogen oxidation in hydrogen fuel cells. High performance GDEs with low loadings of platinum group metals are being developed for oxygen evolution reaction at the anode of water electrolyzers and for the oxygen reduction reaction at the cathode of fuel cells.
Abstract translation:公开了高效,独立的气体扩散电极(GDE)及其制造和测试方法,纳米催化直接结合在气体扩散层上,使得催化剂层的完整性保持不含聚合物电解质膜,有利于最小化电子 ,prottmtc和扩散电阻。 设计的实施例提供了示出用于测试溶液电化学电池中的独立GDE的简易挂带方法的示例,其消除了旋转盘电极上的mA-cm-2级质量传输限制电流,以允许研究单电极上的反应动力学 超过足够宽的电流范围(高达A cm -2),没有质量传输限制。 制造超低含量GDE作为氢分解器中析氢的阴极和氢燃料电池中氢氧化的阳极。 正在开发用于铂电池负极低负载的高性能GDE,用于在水电解器的阳极处的氧析出反应以及燃料电池阴极处的氧还原反应。
Abstract:
The present invention is to provide a method for producing a core-shell catalyst for fuel cells, which is configured to facilitate shell deposition by, at the time of shell deposition, decreasing an oxidation-reduction potential lower than ever before. Disclosed is a method for producing a core-shell catalyst for fuel cells, wherein the method comprises: a bubbling step of bubbling hydrogen into a mixture A containing a core fine particle-supported carbon and alcohol; a first refluxing step of refluxing the mixture A after the bubbling step; a mixing step of preparing a mixture B by, after the first refluxing step, mixing the mixture A having a temperature that is lower than that in the first refluxing step with a shell material; and a second refluxing step of refluxing the mixture B.
Abstract:
The present disclosure relates to methods for producing nanoparticles. The nanoparticles may be made using ethanol as the solvent and the reductant to fabricate noble-metal nanoparticles with a narrow particle size distributions, and to coat a thin metal shell on other metal cores. With or without carbon supports, particle size is controlled by fine-tuning the reduction power of ethanol, by adjusting the temperature, and by adding an alkaline solution during syntheses. The thickness of the added or coated metal shell can be varied easily from sub-monolayer to multiple layers in a seed-mediated growth process. The entire synthesis of designed core-shell catalysts can be completed using metal salts as the precursors with more than 98% yield; and, substantially no cleaning processes are necessary apart from simple rinsing. Accordingly, this method is considered to be a “green” chemistry method.
Abstract:
The present disclosure relates to methods for producing nanoparticles. The nanoparticles may be made using ethanol as the solvent and the reductant to fabricate noble-metal nanoparticles with a narrow particle size distributions, and to coat a thin metal shell on other metal cores. With or without carbon supports, particle size is controlled by fine-tuning the reduction power of ethanol, by adjusting the temperature, and by adding an alkaline solution during syntheses. The thickness of the added or coated metal shell can be varied easily from sub-monolayer to multiple layers in a seed-mediated growth process. The entire synthesis of designed core-shell catalysts can be completed using metal salts as the precursors with more than 98% yield; and, substantially no cleaning processes are necessary apart from simple rinsing. Accordingly, this method is considered to be a “green” chemistry method.
Abstract:
The present disclosure relates to methods for producing nanoparticles. The nanoparticles may be made using ethanol as the solvent and the reductant to fabricate noble-metal nanoparticles with a narrow particle size distributions, and to coat a thin metal shell on other metal cores. With or without carbon supports, particle size is controlled by fine-tuning the reduction power of ethanol, by adjusting the temperature, and by adding an alkaline solution during syntheses. The thickness of the added or coated metal shell can be varied easily from sub-monolayer to multiple layers in a seed-mediated growth process. The entire synthesis of designed core-shell catalysts can be completed using metal salts as the precursors with more than 98% yield; and, substantially no cleaning processes are necessary apart from simple rinsing. Accordingly, this method is considered to be a “green” chemistry method.
Abstract:
A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves electrochemically exchanging a mediating element on a substrate with a noble metal film by alternatingly sweeping potential in forward and reverse directions for a predetermined number of times in an electrochemical cell. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis.