摘要:
The invention provides a superconducting ceramic laminate including a superconducting tape mechanically coupled to, and compressively strained to 0.1% or more under a predetermined load by, at least one cladding tape. The material and thickness of the cladding tape or tapes are selected relative to the material and thickness of the superconducting tape to locate the neutral axis so that, under a predetermined heavy load, the maximum compressive strain on any superconducting portion of the superconducting tape is less than the critical compressive strain and the maximum tensile strain on any superconducting portion of the superconducting tape under a predetermined load is less than the critical tensile strain. By "heavy load" is meant a load on the laminate equivalent to a load on the unlaminated superconducting tape selected for the laminate including a surface bend strain on the unlaminated superconducting tape of at least 0.1%. The laminate provides high critical current capacity, improved strain tolerance, superior critical current retention, and high packing factors. Articles comprising the laminates, such as coils and cables, are also provided.
摘要:
A superconducting ceramic includes a laminate and a superconducting ceramic tape joined to the laminate. The laminate and superconductor tape are joined such that the tape is under a compressive stress. The compressive stress is of a greater amount than compressive stress which results from differences in thermal expansion of the tape and the laminate. The greater compressive stress can be achieved by putting the laminate under a greater tension than the superconducting ceramic tape during joining of the superconducting ceramic tape to the laminate.
摘要:
A superconducting ceramic includes a laminate and a superconducting ceramic tape joined to the laminate. The laminate and superconductor tape are joined such that the tape is under a compressive stress. The compressive stress is of a greater amount than the compressive stress which results from differences in thermal expansion of the tape and the laminate. The greater compressive stress can be achieved by putting the laminate under a greater tension than the superconducting ceramic tape during joining of the superconducting ceramic tape to the laminate.
摘要:
A high performance superconducting ceramic article for use in a liquid cryogen bath is provided. It includes a superconducting ceramic tape having at least one surface vulnerable to cryogenic infiltration is sealed on each vulnerable surface to a non-porous metallic laminate, which also provides the desired support structure, in substantially impervious relation by a non-porous metallic bonding agent. This results in greater protection of the superconducting ceramic tape from cryogen infiltration, and permits greater thermal cycling of the superconductor during use without causing degradation of the tape's critical current carrying capacity.
摘要:
The invention features a superconducting conductor for use in a preselected fluid cryogen including a composite ceramic superconducting wire having an outer surface along its length; and a sealing structure hermetically surrounding the outer surface to prevent the cryogen from infiltrating into the wire and degrading its superconducting properties, even under pressurized conditions. The superconducting conductor can be used in superconducting cabling and coil applications. The sealing structure can be formed by laminating metallic tapes to the wire, encircling at least one metallic sheet around the outer surface of the wire, welding a plurality of metallic sheets to one another to encircle the outer surface of the wire, or forming a polymer coating completely covering the outer surface of the wire.
摘要:
A high performance superconducting ceramic article for use in a liquid cryogen bath is provided. It includes a superconducting ceramic tape having at least one surface vulnerable to cryogenic infiltration is sealed on each vulnerable surface to a non-porous metallic laminate, which also provides the desired support structure, in substantially impervious relation by a non-porous metallic bonding agent. This results in greater protection of the superconducting ceramic tape from cryogen infiltration, and permits greater thermal cycling of the superconductor during use without causing degradation of the tape's critical current carrying capacity.
摘要:
A method for fabricating superconductor articles with an epitaxial layer is described. The method can be performed under conditions of relatively high pressure and low substrate surface temperature. The resulting epitaxial layers can demonstrate various advantageous features, including low pore density and/or inclusions with small average particle size diameter.