摘要:
Embodiments of a method and apparatus are described for operating a mobile computing device in different modes using different operating systems. An apparatus may comprise, for example, a memory operative to store multiple operating systems, a processor operative to execute the multiple operating systems, an operating system management module operative to select a first operating system when the mobile computing device is in a first mode or a second operating system when the mobile computing device is in a second mode and the mobile computing device is coupled to one or more external devices. Other embodiments are described and claimed.
摘要:
Embodiments of a method and apparatus are described for operating a mobile computing device in different modes using different operating systems. An apparatus may comprise, for example, a memory operative to store multiple operating systems, a processor operative to execute the multiple operating systems, an operating system management module operative to select a first operating system when the mobile computing device is in a first mode or a second operating system when the mobile computing device is in a second mode and the mobile computing device is coupled to one or more external devices. Other embodiments are described and claimed.
摘要:
Embodiments of systems, apparatuses, and methods for emulating an input/output Advanced Programmable Interrupt Controller are disclosed. In one embodiment, an apparatus includes a first interrupt controller having a first programming model, and emulation logic to emulate a second interrupt controller having a second programming model that is different from the first programming model. The emulation logic is also to mask one of a plurality of interrupt requests to the first interrupt controller for each of the plurality of interrupt requests handled by the emulation logic.
摘要:
An embodiment integrates non-PCI compliant devices with PCI compliant operating systems. A fabric system mimics the behavior of PCI. When non-PCI compliant devices do not know how to respond to PCI enumeration, embodiments provide a PCI enumeration reply and thus emulate a reply that would typically come from a PCI compliant device during emulation. Embodiments allow system designers to incorporate non-standard fabric structures with the benefit of still using robust and mature PCI infrastructure found in modem PCI compliant operating systems. More generally, embodiments allow an operating system compliant with a first standard (but not a second standard) to discover and communicate with a device that is non-compliant with the first standard (but possibly is compliant with the second standard). Other embodiments are described herein.
摘要:
Embodiments of systems, apparatuses, and methods for emulating an input/output Advanced Programmable Interrupt Controller are disclosed. In one embodiment, an apparatus includes a first interrupt controller having a first programming model, and emulation logic to emulate a second interrupt controller having a second programming model that is different from the first programming model. The emulation logic is also to mask one of a plurality of interrupt requests to the first interrupt controller for each of the plurality of interrupt requests handled by the emulation logic.
摘要:
An embodiment integrates non-PCI compliant devices with PCI compliant operating systems. A fabric system mimics the behavior of PCI. When non-PCI compliant devices do not know how to respond to PCI enumeration, embodiments provide a PCI enumeration reply and thus emulate a reply that would typically come from a PCI compliant device during emulation. Embodiments allow system designers to incorporate non-standard fabric structures with the benefit of still using robust and mature PCI infrastructure found in modem PCI compliant operating systems. More generally, embodiments allow an operating system compliant with a first standard (but not a second standard) to discover and communicate with a device that is non-compliant with the first standard (but possibly is compliant with the second standard). Other embodiments are described herein.
摘要:
Systems and methods of managing break events may provide for detecting a first break event from a first event source and detecting a second break event from a second event source. In one example, the event sources can include devices coupled to a platform as well as active applications on the platform. Issuance of the first and second break events to the platform can be coordinated based on at least in part runtime information associated with the platform.
摘要:
Techniques to provide processor state for implementing a power state transition of a processor. In an embodiment, an operating system executing on a processor detects an opportunity to transition the processor to an idle processor power state. In particular embodiments, the operating system initiates the transition by invoking a task switch, wherein information describing a state of the processor is saved to a task switch segment.
摘要:
A processor starting a duty cycle timer with a specified duty cycle period and a specified power state, and if the duty cycle timer expires, placing the processor in the specified power state in response to the expiry of the timer, if the timer has not expired and if an interrupt other than a timer tick interrupt is received, canceling the duty cycle timer in response to the interrupt other than a timer tick interrupt.
摘要:
A processor-based system in a vehicle may be quickly suspended to a lower power consumption state after detecting a signal indicative of engine cranking. Advantageously, the system may be caused to enter the lower power consumption state prior to the time that power is reduced as a result of engine cranking. If the operating system is active when the signal is detected, a routine may be called which causes device contexts to be saved before returning the system to a reduced power consumption state. Otherwise, if the operating system is inactive, an interrupt handler may be called which immediately returns the system to a reduced power consumption state. In this way, the system may be reliably restored to a lower power consumption state before being exposed to the power reduction inherent in engine cranking.