摘要:
A dynamic power recovery system and method are disclosed herein. Additionally, an EDA tool and apparatus configured to perform dynamic power recovery are disclosed. In one embodiment, the system includes: (1) a power recovery module configured to carry out an instance of an initial power recovery process in each of multiple scenarios concurrently, the initial power recovery process including making first conditional downsizing of cells in at least one path in a circuit design with lower dynamic power cells and estimating a delay and a slack of the at least one path based on the first conditional downsizings and (2) a speed recovery module associated with the power recovery module and configured to carry out a speed recovery process in each of the multiple scenarios concurrently, the speed recovery process including determining whether the first conditional downsizings cause a timing violation with respect to the at least one path and making second conditional upsizings with higher dynamic power cells until the timing violation is removed.
摘要:
A dynamic power recovery system and method are disclosed herein. Additionally, an EDA tool and apparatus configured to perform dynamic power recovery are disclosed. In one embodiment, the system includes: (1) a power recovery module configured to carry out an instance of an initial power recovery process in each of multiple scenarios concurrently, the initial power recovery process including making first conditional downsizing of cells in at least one path in a circuit design with lower dynamic power cells and estimating a delay and a slack of the at least one path based on the first conditional downsizings and (2) a speed recovery module associated with the power recovery module and configured to carry out a speed recovery process in each of the multiple scenarios concurrently, the speed recovery process including determining whether the first conditional downsizings cause a timing violation with respect to the at least one path and making second conditional upsizings with higher dynamic power cells until the timing violation is removed.
摘要:
Various embodiments of methods of designing an integrated circuit (IC) are provided herein. One embodiment of one such method includes: (1) generating a functional IC design, (2) determining a target clock rate for the functional IC design, (3) generating a netlist from the functional IC design that meets the target clock rate, (4) determining a unitless performance/power quantifier from the netlist, (5) attempting to increase the unitless performance/power quantifier by changing at least one of a speed, an area and a power consumption in at least some noncritical paths in the netlist, wherein the attempting is performed by a processor and (6) generating a layout of the IC from the netlist.
摘要:
Methods of designing an IC and an apparatus are disclosed. In one embodiment, a method includes: (1) creating a functional circuit for a functional block of an IC design, (2) verifying said functional circuit satisfies a rule-set for said IC design, wherein said rule-set is context-based with respect to said design flow, (3) synthesizing a logical circuit based on the functional circuit; (4) verifying the logical circuit satisfies the rule set; (5) implementing a physical layout of the logical circuit; and (6) verifying the physical layout satisfies the rule set, wherein each step of the method is carried out by at least one EDA tool.
摘要:
Various embodiments of methods of designing an integrated circuit (IC). One embodiment of one such method includes: (1) generating a functional design for the IC, (2) determining performance objectives for the IC, (3) determining an optimization target voltage for the IC, (4) determining whether the IC needs voltage scaling to achieve the performance objectives at the optimization target voltage and, if so, whether the IC is to employ static voltage scaling or adaptive voltage scaling, (5) using the optimization target voltage to implement a layout from the functional IC design that meets the performance objectives and (6) performing a timing signoff of the layout at the optimization target voltage.
摘要:
A method of simulating the electrical behavior of an ideal transformer. The representation of the ideal transformer is frequency independent and can be used to simulate the behavior of an ideal transformer over the frequency range from DC to infinity. In one embodiment, the ideal transformer is represented as having an input sub-circuit and an output sub-circuit. Each sub-circuit includes a resistor connected in parallel across a current controlled current source. The input current, output current, current sources, and resistances are scaled by a scaling factor representing the turns ratio between the primary and secondary windings of a physical transformer. In the present invention, the current sources are responsible for the current scaling and the resistors are responsible for the impedance scaling. The circuit elements of the representation may be used as the basis for generating a set of input parameters for a circuit emulation program.
摘要:
Methods of designing an integrated circuit and an apparatus for designing an integrated circuit are disclosed herein. In one embodiment, a method includes: (1) generating a block model of the integrated circuit according to a first timing budget, (2) developing a top level implementation of the integrated circuit according to the first timing budget, (3) determining a second timing budget for the integrated circuit based on the block model and (4) modifying the block model and the top level implementation employing the second timing budget to provide a progressive block model and a modified top level implementation.
摘要:
Various embodiments of methods of designing an integrated circuit (IC). One embodiment of one such method includes: (1) generating a functional design for the IC, (2) determining performance objectives for the IC, (3) determining an optimization target voltage for the IC, (4) determining whether the IC needs voltage scaling to achieve the performance objectives at the optimization target voltage and, if so, whether the IC is to employ static voltage scaling or adaptive voltage scaling, (5) using the optimization target voltage to synthesize a layout from the functional IC design that meets the performance objectives by employing a unitless performance/power quantifier as a metric to gauge a degree of optimization thereof and (6) performing a timing signoff of the layout at the optimization target voltage.
摘要:
A power switching circuit is provided for use in an integrated circuit including at least a first voltage rail and a second voltage rail. The power switching circuit includes at least one MOS device having a first source/drain adapted for connection to the first voltage rail, a second source/drain adapted for connection to the second voltage rail, and a gate adapted for receiving a control signal. The MOS device selectively connects the first voltage rail to the second voltage rail in response to the control signal. The first and second voltage rails form a grid overlying the power switching circuit, the first and second voltage rails being formed in different planes relative to one another. The connection between the power switching circuit and the first voltage rail is made at an interface between the first and voltage rails.
摘要:
A first integrated circuit design with a first maximum operating frequency is modified to achieve a second integrated circuit design with a second maximum operating frequency. The integrated circuit design comprises an arrangement of cells. Each of these cells drives a signal that propagates through a net of other circuit elements to one or more nodes that are limited by respective signal timing constraints. An analytical cost function is assigned to each of the cells. Each analytical cost function comprises a value for its respective cell that is based on one or more speed-related factors indicative of the impact of the respective cell on the first maximum operating frequency of the first integrated circuit design. One or more of the cells are replaced with different cells based on the determined analytical cost functions.