摘要:
An apparatus and method are disclosed. In one embodiment, the apparatus trains a memory link using a signal alignment unit. The signal alignment unit aligns a read data strobe signal that is transmitted on the link with the center of a read data eye transmitted on the link. Next, the signal alignment unit aligns a receive enable signal that is transmitted on the link with the absolute time that data returns the data lines of the link a column address strobe signal is sent to the memory coupled to the link. Next, the signal alignment unit aligns a write data strobe signal transmitted on the link with the link's clock signal. Finally, the signal alignment unit aligns the center of the write data eye transmitted on the link with the write data strobe transmitted on the link.
摘要:
An apparatus and method are disclosed. In one embodiment, the apparatus trains a memory link using a signal alignment unit. The signal alignment unit aligns a read data strobe signal that is transmitted on the link with the center of a read data eye transmitted on the link. Next, the signal alignment unit aligns a receive enable signal that is transmitted on the link with the absolute time that data returns the data lines of the link a column address strobe signal is sent to the memory coupled to the link. Next, the signal alignment unit aligns a write data strobe signal transmitted on the link with the link's clock signal. Finally, the signal alignment unit aligns the center of the write data eye transmitted on the link with the write data strobe transmitted on the link.
摘要:
REUT (Robust Electrical Unified Testing) for memory links is introduced which speeds testing, tool development, and debug. In addition it provides training hooks that have enough performance to be used by BIOS to train parameters and conditions that have not been possible with past implementations. Address pattern generation circuitry is also disclosed.
摘要:
Embodiments of the invention are generally directed to systems, methods, and apparatuses for the active training of memory command timing. In some embodiments, the CMD/CTL timing is actively trained using active feedback between memory modules and the memory controller. Other embodiments are described and claimed.
摘要:
In an embodiment, the effect of signal phase difference on a memory system is tested for various operating states. The various operating states may be represented as respective sample points on a plane defined by a range of values for a difference in signal phases and a range of values for another operating state parameter. In various embodiments, sample points for a round of crosstalk testing may include two sample points which are offset from the same reference point on the plane along different respective axes, where the axes are oblique to one another.
摘要:
In an embodiment, the effect of signal phase difference on a memory system is tested for various operating states. The various operating states may be represented as respective sample points on a plane defined by a range of values for a difference in signal phases and a range of values for another operating state parameter. In various embodiments, sample points for a round of crosstalk testing may include two sample points which are offset from the same reference point on the plane along different respective axes, where the axes are oblique to one another.
摘要:
Embodiments of the invention are generally directed to systems, methods, and apparatuses for the active training of memory command timing. In some embodiments, the CMD/CTL timing is actively trained using active feedback between memory modules and the memory controller. Other embodiments are described and claimed.
摘要:
Techniques and mechanisms for configuring an integrated circuit (IC) chip to implement a protocol stack. In an embodiment, a transaction layer of the IC chip is operable to exchange with a link layer of the IC chip transaction layer packets (TLPs) having a format compatible with one defined in a Peripheral Component Interconnect Express™ (PCIe™) specification. Configuration circuitry of the IC chip provides for configuration of a first protocol stack including the transaction layer, circuitry of the link layer and a first physical layer of the IC chip. The configuration circuitry further provides for an alternative configuration of a second protocol stack including the transaction layer, circuitry of the link layer and a second physical layer of the IC chip. In another embodiment, the first protocol stack supports single-ended signaling to communicate TLP information, whereas the second protocol stack supports differential signaling to communicate TLP information.
摘要:
Techniques and mechanisms for configuring an integrated circuit (IC) chip to implement a protocol stack. In an embodiment, a transaction layer of the IC chip is operable to exchange with a link layer of the IC chip transaction layer packets (TLPs) having a format compatible with one defined in a Peripheral Component Interconnect Express™ (PCIe™) specification. Configuration circuitry of the IC chip provides for configuration of a first protocol stack including the transaction layer, circuitry of the link layer and a first physical layer of the IC chip. The configuration circuitry further provides for an alternative configuration of a second protocol stack including the transaction layer, circuitry of the link layer and a second physical layer of the IC chip. In another embodiment, the first protocol stack supports single-ended signaling to communicate TLP information, whereas the second protocol stack supports differential signaling to communicate TLP information.
摘要:
Described herein is an apparatus for dynamically adjusting a voltage reference level for optimizing an I/O system to achieve a certain performance metric. The apparatus comprises: a voltage reference generator to generate a voltage reference; and a dynamic voltage reference control unit, coupled with the voltage reference generator, to dynamically adjust a level of the voltage reference in response to an event. The apparatus is used to perform the method comprising: generating a voltage reference for an input/output (I/O) system; determining a worst case voltage level of the voltage reference; dynamically adjusting, via a dynamic voltage reference control unit, the voltage reference level based on determining the worst case voltage level; and computing a center of an asymmetrical eye based on the dynamically adjusted voltage reference level.