摘要:
In a light transmitting, color image display unit, a top surface of a black matrix partition wall exhibits lyophobicity relative to in-solution pigment particles while sidewall surfaces of the black matrix exhibit lyophilicity relative to in-solution pigment particles. This allows the pigment containing solutions to abut without repulsion against the sidewall surfaces. Consequently, it is possible to prevent color filter solutions deposited through an inkjet deposition process from overflowing over the lyophobic partition wall tops into adjacent pixel regions and it is also possible to conformably define color filters of consistent thickness between the black matrix partition walls.
摘要:
In a light transmitting, color image display unit, a top surface of a black matrix partition wall exhibits lyophobicity relative to in-solution pigment particles while sidewall surfaces of the black matrix exhibit lyophilicity relative to in-solution pigment particles. This allows the pigment containing solutions to abut without repulsion against the sidewall surfaces. Consequently, it is possible to prevent color filter solutions deposited through an inkjet deposition process from overflowing over the lyophobic partition wall tops into adjacent pixel regions and it is also possible to conformably define color filters of consistent thickness between the black matrix partition walls.
摘要:
Contamination is blocked from material of a color filter layer provided on a thin-film transistors (TFT) supporting substrate by sealing over the color filter layer with an inorganic insulating layer. During mass production manufacture, a plasma surface cleaning step is employed after the color filter layer is deposited but before the inorganic insulating layer is deposited. A low temperature CVD process is used to deposit the inorganic insulating layer with a substantially uniform thickness conformably over the color filter layer including conformably into openings provided through the color filter layer.
摘要:
Contamination is blocked from material of a color filter layer provided on a thin-film transistors (TFT) supporting substrate by sealing over the color filter layer with an inorganic insulating layer. During mass production manufacture, a plasma surface cleaning step is employed after the color filter layer is deposited but before the inorganic insulating layer is deposited. A low temperature CVD process is used to deposit the inorganic insulating layer with a substantially uniform thickness conformably over the color filter layer including conformably into openings provided through the color filter layer.
摘要:
Contamination is blocked from material of a color filter layer provided on a thin-film transistors (TFT) supporting substrate by sealing over the color filter layer with an inorganic insulating layer. During mass production manufacture, a plasma surface cleaning step is employed after the color filter layer is deposited but before the inorganic insulating layer is deposited. A low temperature CVD process is used to deposit the inorganic insulating layer with a substantially uniform thickness conformably over the color filter layer including conformably into openings provided through the color filter layer.
摘要:
A display substrate includes a gate line extending in a first direction on a base substrate, a data line on the base substrate and extending in a second direction crossing the first direction, a gate insulating layer on the gate line, a thin-film transistor and a pixel electrode. The thin-film transistor includes a gate electrode electrically connected the gate line, an oxide semiconductor pattern, and source and drain electrodes on the oxide semiconductor pattern and spaced apart from each other. The oxide semiconductor pattern includes a first semiconductor pattern including indium oxide and a second semiconductor pattern including indium-free oxide. The pixel electrode is electrically connected the drain electrode.
摘要:
A thin-film transistor includes a semiconductor pattern, a first gate electrode, a source electrode, a drain electrode and a second gate electrode. The semiconductor pattern is formed on a substrate. A first conductive layer has a pattern that includes the first gate electrode which is electrically insulated from the semiconductor pattern. A second conductive layer has a pattern that includes a source electrode electrically connected to the semiconductor pattern, a drain electrode spaced apart from the source electrode, and a second gate electrode electrically connected to the first gate electrode. The second gate electrode is electrically insulated from the semiconductor pattern, the source electrode and the drain electrode.
摘要:
A display device includes a gate pattern, a semiconductor pattern, a source pattern and a pixel electrode are provided. The gate pattern is formed on a base substrate and includes a gate line and a gate electrode. The semiconductor pattern is formed on the base substrate having the gate pattern and includes an oxide semiconductor. The source pattern is formed from a data metal layer and formed on the base substrate having the semiconductor pattern, and includes a data line, a source electrode and a drain electrode. The data metal layer includes a first copper alloy layer, and a lower surface of the data metal layer substantially coincides with an upper surface of the semiconductor pattern. The pixel electrode is formed on the base substrate having the source pattern and electrically connected to the drain electrode. Thus, manufacturing processes may be simplified, and reliability may be improved.
摘要:
A thin film transistor array panel is provided, which includes: a gate line, a gate insulating layer, and a semiconductor layer sequentially formed on a substrate; a data line and a drain electrode formed at least on the semiconductor layer; a first passivation layer formed on the data line and the drain electrode and having a first contact hole exposing the drain electrode at least in part; a second passivation layer formed on the first passivation layer and having a second contact hole that is disposed on the first contact hole and has a first bottom edge, placed outside the first contact hole and a second bottom edge placed inside the first contact hole; and a pixel electrode formed on the second passivation layer and connected to the drain electrode through the first and the second contact holes.
摘要:
A display substrate includes a gate line, a gate insulating layer, a data line, a thin-film transistor (TFT), a storage line, a passivation layer, a color filter layer, a pixel electrode, a first light-blocking layer and a second light-blocking layer. The storage line includes the same material as the gate line. The passivation layer covers the data line. The color filter layer is formed on the passivation layer. The pixel electrode is formed on the color filter layer in each pixel. The first light-blocking layer is formed between adjacent pixel electrodes, and includes the same material as the gate line. The second light-blocking layer is formed between the first light-blocking layer, and includes the same material as the data line. Therefore, an aperture ratio may be increased.