摘要:
A method for forming a bottom spin valve sensor element with a novel seed layer and synthetic antiferromagnetic pinned layer and the sensor so formed. The novel seed layer comprises an approximately 30 angstrom thick layer of NiCr whose atomic percent of Cr is 31%. On this seed layer there can be formed either a single bottom spin valve read sensor or a symmetric dual spin valve read sensor having synthetic antiferromagnetic pinned layers. An extremely thin (approximately 80 angstroms) MnPt pinning layer can be formed directly on the seed layer and extremely thin pinned and free layers can then subsequently be formed so that the sensors can be used to read recorded media with densities exceeding 60 Gb/in2. Moreover, the high pinning field and optimum magnetostriction produces an extremely robust sensor.
摘要:
A method for forming a bottom spin valve sensor element with a novel seed layer and synthetic antiferromagnetic pinned layer and the sensor so formed. The novel seed layer comprises an approximately 30 angstrom thick layer of NiCr whose atomic percent of Cr is 31%. On this seed layer there can be formed either a single bottom spin valve read sensor or a symmetric dual spin valve read sensor having synthetic antiferromagnetic pinned layers. An extremely thin (approximately 80 angstroms) MnPt pinning layer can be formed directly on the seed layer and extremely thin pinned and free layers can then subsequently be formed so that the sensors can be used to read recorded media with densities exceeding 60 Gb/in2. Moreover, the high pinning field and optimum magnetostriction produces an extremely robust sensor.
摘要:
A method for forming a bottom spin valve sensor element with a novel seed layer and synthetic antiferromagnetic pinned layer and the sensor so formed. The novel seed layer comprises an approximately 30 angstrom thick layer of NiCr whose atomic percent of Cr is 31%. On this seed layer there can be formed either a single bottom spin valve read sensor or a symmetric dual spin valve read sensor having synthetic antiferromagnetic pinned layers. An extremely thin (approximately 80 angstroms) MnPt pinning layer can be formed directly on the seed layer and extremely thin pinned and free layers can then subsequently be formed so that the sensors can be used to read recorded media with densities exceeding 60 Gb/in2. Moreover, the high pinning field and optimum magnetostriction produces an extremely robust sensor.
摘要:
A method for fabricating a longitudinally hard biased, bottom spin valve GMR sensor with a lead overlay (LOL) conducting lead configuration and a narrow effective trackwidth. The advantageous properties of the sensor are obtained by providing two novel barrier layers, one of which prevents oxidation of and Au diffusion into the free layer during annealing and etching and the other of which prevents oxidation of the capping layer during annealing so as to allow good electrical contact between the lead and the sensor stack.
摘要:
A method for fabricating a longitudinally hard biased, bottom spin valve GMR sensor with a lead overlay (LOL) conducting lead configuration and a narrow effective trackwidth. The advantageous properties of the sensor are obtained by providing two novel barrier layers, one of which prevents oxidation of and Au diffusion into the free layer during annealing and etching and the other of which prevents oxidation of the capping layer during annealing so as to allow good electrical contact between the lead and the sensor stack.
摘要:
A method for fabricating a longitudinally hard biased, bottom spin valve GMR sensor with a lead overlay (LOL) conducting lead configuration and a narrow effective trackwidth. The advantageous properties of the sensor are obtained by providing two novel barrier layers, one of which prevents oxidation of and Au diffusion into the free layer during annealing and etching and the other of which prevents oxidation of the capping layer during annealing so as to allow good electrical contact between the lead and the sensor stack.
摘要:
A STT-RAM MTJ that minimizes spin-transfer magnetization switching current (Jc) is disclosed. The MTJ has a MgO tunnel barrier layer formed with a natural oxidation process to achieve a low RA (10 ohm-um2) and a Fe or Fe/CoFeB/Fe free layer which provides a lower intrinsic damping constant than a CoFeB free layer. A Fe, FeB, or Fe/CoFeB/Fe free layer when formed with a MgO tunnel barrier (radical oxidation process) and a CoFeB AP1 pinned layer in a MRAM MTJ stack annealed at 360° C. provides a high dR/R (TMR)>100% and a substantial improvement in read margin with a TMR/Rp_cov=20. High speed measurement of 100 nm×200 nm oval STT-RAM MTJs has shown a Jc0 for switching a Fe free layer is one half that for switching an amorphous CO40Fe40B20 free layer. A Fe/CoFeB/Fe free layer configuration allows the Hc value to be increased for STT-RAM applications.
摘要:
An STT-MTJ MRAM cell utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer. The cell includes an IrMn pinning layer, a SyAP pinned layer, a naturally oxidized, crystalline MgO tunneling barrier layer that is formed on an Ar-ion plasma smoothed surface of the pinned layer and, in one embodiment, a composite tri-layer free layer that comprises an amorphous layer of Co60Fe20B20 of approximately 20 angstroms thickness formed between two crystalline layers of Fe of 3 and 6 angstroms thickness respectively. The free layer is characterized by a low Gilbert damping factor and by very strong polarizing action on conduction electrons. The resulting cell has a low critical current, a high dR/R and a plurality of such cells will exhibit a low variation of both resistance and pinned layer magnetization angular dispersion.
摘要:
A high performance MTJ, and a process for manufacturing it, are described. A capping layer of NiFeHf is used to getter oxygen out of the free layer, thereby increasing the sharpness of the free layer-tunneling layer interface. The free layer comprises two NiFe layers whose magnetostriction constants are of opposite sign, thereby largely canceling one another.
摘要:
A method for forming a thin conductive lead layer of high sheet conductivity, high hardness, high melting point, high corrosion resistance and lacking the propensity for smearing, oozing, electromigration and nodule formation. Said lead layer is formed upon the hard magnetic longitudinal bias layer of an abutted junction spin-valve type magnetoresistive read head and said read head is therefore suitable for reading high density recorded disks at high RPM.