Abstract:
The present invention discloses a carbon nanotube device comprising a support having a conductive surface and a carbon nanotube, one of whose terminus binds to the conductive surface so that conduction between the surface and the carbon nanotube is maintained, wherein a root of the carbon nanotube where the carbon nanotube binds to the conductive surface is surrounded by a wall. Such a carbon nanotube device, having carbon nanotubes with a uniform direction of growth, can generate a large quantity of emitted electrons when it is used as an electron emission device.
Abstract:
Disclosed are an optical-path changing apparatus and a light radiating apparatus. The optical-path changing apparatus includes a light scattering member such as a light reflecting member, and a guide member for guiding the light scattering member. The direction of light scattered by the light scattering member is substantially constant during movement of the light scattering member guided by the guide member. The light radiating apparatus includes a fluorescent member, a guide member for guiding the fluorescent member, and a light emitting device for irradiating with light the fluorescent member moving along the guide member.
Abstract:
The present invention provides a nano-structure which can be applied to various high-function devices. The nano-structure includes an anodically oxidized layer having a plurality of kinds of pores.
Abstract:
An electron-beam excitation laser has a laser structure with a light emitter and reflectors on one hand and an electron source on the other hand, wherein at least part of the light emitter or reflectors has a multidimensional photonic crystal structure. An electron-beam excitation laser includes an electron source emitting electrons and a laser structure consisting of a light emitter and reflectors, accelerates electrons from the electron source, and irradiates the electrons to the laser structure to emit a laser beam from the laser structure, wherein the reflectors and/or the light emitter in the laser structure are formed with multidimensional photonic crystals in which dielectrics with different dielectric constants are arrayed in a plurality of directions at periodic intervals, and one of the dielectrics with different dielectric constants may be formed with a light-emitting material.
Abstract:
A method of manufacturing an electronic device in which a substrate with a pair of electrodes is provided and a carbon nanotube is formed or arranged to electrically connect the electrodes.
Abstract:
An optical transmission device includes a planar waveguide for transmitting an optical signal, a light emitting unit for inputting a light beam in the planar waveguide, and a setting unit for setting a propagation angle of a light beam transmitted in the planar waveguide. A plurality of light beams with different propagation angles are transmitted in the planar waveguide.
Abstract:
A method of manufacturing a nonostructure, which enables cylindrical pores arrayed according to any periodic pattern to be easily made on a substrate over a large area at a low cost in a short period of time. The method of manufacturing a structure having such pores includes the steps of preparing a substrate having recesses in its surface, providing a film on the surface of the substrate and anodizing the film.
Abstract:
The present invention provides a light-receiving device comprising, on a substrate, a first light-receiving part for detecting light of a first wavelength range, and a second light-receiving part for detecting light of a second wavelength range, wherein at least a part of incident light is transmitted through the first light-receiving part and then received by the second light-receiving part, and wherein the central wavelength of the first wavelength range is longer than the central wavelength of the second wavelength range.