摘要:
The invention provides a method for identification of alleles. In this method, genomic DNA is used as target. Multiple allele-specific PCR amplification are carried out with a group of primers comprising one or more allele-specific primers for a target gene, a universal primer, and a common primer; and a DNA polymerase without 5′ to 3′ exonuclease activity. The PCR products are hybridized with tag probes immobilized on a DNA chip. Results are determined based on the signal intensity and the position of the probe immobilized on the array. Each allele-specific primer comprises a unique tag sequence at the 5′ end. Each tag probe immobilized on the DNA chip comprises a sequence identical to its corresponding tag sequence; and each tag probe hybridizes only with the complementary sequence in the PCR amplification product.
摘要:
The invention provides a method for identification of alleles. In this method, genomic DNA is used as target. Multiple allele-specific PCR amplification are carried out with a group of primers comprising one or more allele-specific primers for a target gene, a universal primer, and a common primer; and a DNA polymerase without 5′ to 3′ exonuclease activity. The PCR products are hybridized with tag probes immobilized on a DNA chip. Results are determined based on the signal intensity and the position of the probe immobilized on the array. Each allele-specific primer comprises a unique tag sequence at the 5′ end. Each tag probe immobilized on the DNA chip comprises a sequence identical to its corresponding tag sequence; and each tag probe hybridizes only with the complementary sequence in the PCR amplification product.
摘要:
The present invention provides a microarray for detecting a genotype at a polymorphic site in a plurality of nucleic acid samples, comprising a first set of nucleic acid fragments derived from the samples and a second set of nucleic acid fragments derived from a plurality of references immobilized thereon. The invention also provides a microarray comprising a set of nucleic acid fragments immobilized on the surface of the microarray, wherein the nucleic acid fragments are derived from the samples by amplifying a region in the sample containing the polymorphism through asymmetric PCR amplification. Methods of using and making the microarrays are also provided.
摘要:
The present invention provides an improved nucleic acid hybridization process employing a modified oligonucleotide probe comprising naturally occurring nucleotide bases. At least one nucleotide in the modified oligonucleotide is artificially mismatched relative to the control nucleic acid in addition to any mismatches arising from a variant nucleic acid target containing a sequence variation. The artificial mismatch and the sequence variation positions are separated from one another on the oligonucleotide by six to nine nucleotide positions.
摘要:
The present invention provides an improved nucleic acid hybridization process employing a modified oligonucleotide probe comprising naturally occurring nucleotide bases. At least one nucleotide in the modified oligonucleotide is artificially mismatched relative to the control nucleic acid in addition to any mismatches arising from a variant nucleic acid target containing a sequence variation. The artificial mismatch and the sequence variation positions are separated from one another on the oligonucleotide by six to nine nucleotide positions.
摘要:
A microarray-based assay is provided, which is used for analyzing molecular interactions, including polynucleotides, polypeptides, antibodies, small molecule compounds, peptides and carbohydrates. Such method comprises labeling a target molecule with a luminophore, coupling the target molecule to a particle, and binding to a probe molecule on microarray. In particular, multiplexed genetic analysis of nucleic acid fragments can be implemented. Specific genes, single nucleotide polymorphisms or gene mutations, such as deletions, insertions, and indels, can be identified. This technology, with high sensitivity, enables the detection and interpretation of molecular interactions in an efficient way.
摘要:
This invention relates generally to the field of nucleic acid analysis. In particular, the invention provides a method for typing a target gene, using, inter alia, a chip comprising a support suitable for use in nucleic acid hybridization having immobilized thereon an oligonucleotide probe complementary to said target nucleotide sequence and at least one of the following oligonucleotide control probes: a positive control probe, a negative control probe, a hybridization control probe and an immobilization control probe. Oligonucleotide probes or probes arrays for typing a HLA target gene are also provided.
摘要:
This invention relates generally to the field of nucleic acid analysis. In particular, the invention provides a method for typing a target gene, using, inter alia, a chip comprising a support suitable for use in nucleic acid hybridization having immobilized thereon an oligonucleotide probe complementary to said target nucleotide sequence and at least one of the following oligonucleotide control probes: a positive control probe, a negative control probe, a hybridization control probe and an immobilization control probe. Oligonucleotide probes or probes arrays for typing a HLA target gene are also provided.
摘要:
The present invention provides kits and microarrays containing primer pairs for amplifying drug resistance genes and/or probes for detection of drug resistance genes. Also provided are methods of detecting drug resistance genes using kits and microarrays described herein.
摘要:
A microarray-based assay is provided, which is used for analyzing molecular interactions, including polynucleotides, polypeptides, antibodies, small molecule compounds, peptides and carbohydrates. Such method comprises labeling a target molecule with a luminophore, coupling the target molecule to a particle, and binding to a probe molecule on microarray. In particular, multiplexed genetic analysis of nucleic acid fragments can be implemented. Specific genes, single nucleotide polymorphisms or gene mutations, such as deletions, insertions, and indels, can be identified. This technology, with high sensitivity, enables the detection and interpretation of molecular interactions in an efficient way.