摘要:
An IC wafer containing thin oxide is fabricated to include at least two differentially-sized plate areas that may be upper plates of capacitors, or gates of associated MOS transistors. Before testing, the thin gate oxide underlying these plate areas is intentionally stressed by applying a stress current between these plates and the substrate. The stress current magnitude is scaled to the plate area such that each plate sees a substantially constant current density. Because weak oxide defects occur somewhat uniformly throughout the thin oxide, a larger plate or gate will overlie more weak oxide defects than will a plate or gate. If wafer test leakage current between the larger plate or gate and substrate exceeds leakage current between the smaller plate or gate and substrate, weak oxide is indicated because the defect is area dependent. By contrast, charge-induced damage is substantially independent of the areas of the plates or gates, due to the scaling of the stress-inducing currents. Thus, if test leakage current on the wafer is substantially the same for the large and small sized plates or gates, charge-damaged oxide is indicated because the damage is not area dependent. If desired, defects in the thin (gate) oxide may be identified by examining the characteristics of the test MOS devices. The gate-like plates (and if present associated MOS devices) are sufficiently small to be fabricated within scribe lines of the wafer to be tested.
摘要:
A method for making an anti-fuse structure characterized by the steps of forming a conductive base layer; forming an anti-fuse layer over the base layer; patterning the anti-fuse layer to form an anti-fuse island; forming an insulating layer over the anti-fuse island; forming a via hole through the insulating layer to the anti-fuse island; forming a conductive connection layer over the insulating layer and within the via hole; and patterning the conductive connection layer to form a conductive contact to the anti-fuse island. Preferably, the anti-fuse island comprises amorphous silicon which can optionally be covered with a thin layer of a titanium-tungsten alloy.
摘要:
An IC wafer containing thin oxide is fabricated with at least one pair of antenna structures having identical antenna ratio A.sub.R but different antenna plate areas. Each antenna structure includes connected-together conductive plate regions, one plate formed over thick field oxide and the other plate formed over thin oxide on the IC. Because weak oxide defects occur somewhat uniformly throughout the thin oxide, a larger antenna structure will overlie more weak oxide defects than will a smaller antenna structure. If wafer test leakage current across the larger antenna structure exceeds leakage current across the smaller antenna structure, weak oxide is indicated because the defect is area dependent. By contrast, charge-induced damage is substantially independent of the area of the antenna plates. Because the A.sub.R ratios are constant, charge density is constant in the antenna structure portions overlying the thin oxide. If test leakage current on the wafer is substantially the same for each antenna structure, charge-damaged oxide is indicated because the damage is not area dependent. If desired, test MOS devices may be fabricated whose gates are the plates formed over the thin oxide. Defects in the thin (gate) oxide may be identified by examining the characteristics of the test MOS devices.
摘要:
An anti-fuse structure characterized by a substrate, an oxide layer formed over the substrate having an opening formed therein, an amorphous silicon material disposed within the opening and contacting the substrate, and oxide spacers lining the walls of a recess formed within the amorphous silicon. The spacers prevent failures of the anti-fuse structures by covering cusps formed in the amorphous silicon material. The method of the present invention forms the above-described anti-fuse structure and further solves the problem of removing unwanted spacer material from areas outside of the anti-fuse structure locations.
摘要:
An anti-fuse structure characterized by a substrate, an oxide layer formed over the substrate having an opening formed therein, an amorphous silicon material disposed within the opening and contacting the substrate, a conductive protective material, such as titanium tungsten, disposed over the amorphous silicon material, and oxide spacers lining the walls of a recess formed within the protective material. The protective material and the spacers provide tighter programming voltage distributions for the anti-fuse structure and help prevent anti-fuse failure.
摘要:
A method of forming an interconnect structure in which an organic low k dielectric material is deposited over a conductive layer to form a first dielectric layer. An etch stop layer is formed on the first dielectric layer. The etch stop layer and the first dielectric layer are etched to form a slot via in the first dielectric layer. The slot via is longer than the width of a subsequently formed trench. An inorganic low k dielectric material is deposited within the slot via and over the etch stop layer to form a second dielectric layer over the slot via and the etch stop layer. The re-filled slot via is simultaneously etched with the second dielectric layer in which a trench is formed. The entire width of the trench is directly over the via. The re-opened via and the trench are filled with a conductive material.
摘要:
A gas phase planarization process for semiconductor wafers. The present invention comprises a system and method of dry planarization for a semiconductor wafer. For instance, the present invention includes a system adapted to effectively remove all, or a portion of, a layer of dielectric material of a semiconductor wafer through the application of dry abrasion and dry chemistry. As such, a present invention system flattens out height differences of the dielectric material, since high areas of topography are removed faster than low areas. Specifically, one embodiment of the present invention utilizes a dry abrasive polishing pad to abrade the desired surface of the semiconductor wafer within a vacuum planarization chamber. As a result of abrading the surface, the abrasive polishing pad breaks the chemical bonds of a thin layer of the dielectric surface material. Once the chemical bonds are broken, reactive radicals within a plasma gas chemically react with the surface material thereby forming a gaseous species which is highly volatile. In other words, the plasma gas is used to remove previously mechanically polished material from the dielectric layer. Subsequently, the newly formed gaseous species is removed from the vacuum planarization chamber. This process of removing material from the surface of the semiconductor wafer continues until the surface is sufficiently planarized. In this manner, the present invention provides a dry process for planarizing a surface of a semiconductor wafer.
摘要:
A method for producing a glue layer for an integrated circuit which uses tungsten plugs in accordance with the present invention includes: (A) providing a substrate which has a surface, a center, an edge, and a direction normal to the surface; and (B) sputter depositing a glue layer over the surface of the substrate such that an edge thickness of the glue layer measured in the direction normal to the surface at the edge of the substrate is at least 105% of a center thickness of the glue layer measured in the direction normal to the surface at the center of the substrate. In some embodiments, the edge thickness of said glue layer measured in the direction normal to the surface at the edge of the substrate is in the range of approximately 105% to 150% of the center thickness of the glue layer measured in the direction normal to the surface at the center of the substrate, as for example in the range of approximately 110% to 120% of the center thickness of the glue layer measured in the direction normal to the surface at the center of the substrate.
摘要:
A method for producing a glue layer for an integrated circuit which uses tungsten plugs in accordance with the present invention includes: (A) providing a substrate which has a surface, a center, an edge, and a direction normal to the surface; and (B) sputter depositing a glue layer over the surface of the substrate such that an edge thickness of the glue layer measured in the direction normal to the surface at the edge of the substrate is at least 105% of a center thickness of the glue layer measured in the direction normal to the surface at the center of the substrate. In some embodiments, the edge thickness of said glue layer measured in the direction normal to the surface at the edge of the substrate is in the range of approximately 105% to 150% of the center thickness of the glue layer measured in the direction normal to the surface at the center of the substrate, as for example in the range of approximately 110% to 120% of the center thickness of the glue layer measured in the direction normal to the surface at the center of the substrate.
摘要:
A method of fabricating an integrated circuit on a silicon substrate in such a manner as to avoid the requirement of over-etching the polysilicon usually necessary to prevent shorting of adjacent devices by poly filaments caused by deep polysilicon pockets in notch areas created in the field oxide during its growth. The notches are prevented by forming the nitride mask with sloped rather than perpendicular side walls. The sloped side walls present less resistance to the growing oxide than does the usual perpendicular wall and thus does not dig into the growing oxide to form the notches. The edge of the resultant field oxide is therefore smoother, permitting easier and more complete removal of the polysilicon without the need for over-etching.