Abstract:
In order to reduce the negative influence of reactive hydrogen on the lifetime of a reflective optical element, particularly inside an EUV lithography device, there is proposed for the extreme ultraviolet and soft X-ray wavelength region a reflective optical element (50) having a reflective surface (60) with a multilayer system (51) and in the case of which the reflective surface (60) has a protective layer system (59) with an uppermost layer (56) composed of silicon carbide or ruthenium, the protective layer system (59) having a thickness of between 5 nm and 25 nm.
Abstract:
An optical arrangement, e.g. a projection exposure apparatus (1) for EUV lithography, includes: a housing (2) enclosing an interior space (15); at least one, preferably reflective optical element (4-10, 12, 14.1-14.6) arranged in the housing (2); at least one vacuum generating unit (3) for the interior space (15) of the housing (2); and at least one vacuum housing (18, 18.1-18.10) arranged in the interior space (15) and enclosing at least the optical surface (17, 17.1, 17.2) of the optical element (4-10, 12, 14.1-14.5). A contamination reduction unit is associated with the vacuum housing (18.1-18.10) and reduces the partial pressure of contaminating substances, in particular of water and/or hydrocarbons, at least in close proximity to the optical surface (17, 17.1, 17.2) in relation to the partial pressure of the contaminating substances in the interior space (15).
Abstract:
An optical arrangement, e.g. a projection exposure apparatus (1) for EUV lithography, includes: a housing (2) enclosing an interior space (15); at least one, preferably reflective optical element (4-10, 12, 14.1-14.6) arranged in the housing (2); at least one vacuum generating unit (3) for the interior space (15) of the housing (2); and at least one vacuum housing (18, 18.1-18.10) arranged in the interior space (15) and enclosing at least the optical surface (17, 17.1, 17.2) of the optical element (4-10, 12, 14.1-14.5). A contamination reduction unit is associated with the vacuum housing (18.1-18.10) and reduces the partial pressure of contaminating substances, in particular of water and/or hydrocarbons, at least in close proximity to the optical surface (17, 17.1, 17.2) in relation to the partial pressure of the contaminating substances in the interior space (15).
Abstract:
An illumination optical unit for microlithography illuminates an object field with illumination light. The unit includes a first facet mirror that has a plurality of first facets, and a second facet mirror that has a plurality of second facets. The unit has facet pairs which include respectively a facet of the first facet mirror and a facet of the second facet mirror which predefine a plurality of illumination channels for illuminating the object field. At least some of the illumination channels have in each case an assigned polarization element for predefining an individual polarization state of the illumination light guided in the respective illumination channel.
Abstract:
An illumination optical unit for microlithography illuminates an object field with illumination light. The unit includes a first facet mirror that has a plurality of first facets, and a second facet mirror that has a plurality of second facets. The unit has facet pairs which include respectively a facet of the first facet mirror and a facet of the second facet mirror which predefine a plurality of illumination channels for illuminating the object field. At least some of the illumination channels have in each case an assigned polarization element for predefining an individual polarization state of the illumination light guided in the respective illumination channel.
Abstract:
An imaging optical system has a plurality of mirrors. These image an object field in an object plane into an image field in an image plane. In the imaging optical system, the ratio of a maximum angle of incidence of imaging light) on reflection surfaces of the mirrors and an image-side numerical aperture of the imaging optical system is less than 33.8°. This can result in an imaging optical system which offers good conditions for a reflective coating of the mirror, with which a low reflection loss can be achieved for imaging light when passing through the imaging optical system, in particular even at wavelengths in the EUV range of less than 10 nm.
Abstract:
The invention concerns a projection objective of a microlithographic projection exposure apparatus designed for EUV, for imaging an object plane illuminated in operation of the projection exposure apparatus into an image plane. The projection objective has at least one mirror segment arrangement comprising a plurality of separate mirror segments. Associated with the mirror segments of the same mirror segment arrangement are partial beam paths which are different from each other and which respectively provide for imaging of the object plane (OP) into the image plane (IP). The partial beam paths are superposed in the image plane (IP). At least two partial beams which are superposed in the same point in the image plane (IP) were reflected by different mirror segments of the same mirror segment arrangement.
Abstract:
A reflective optical element of an optical system for EUV lithography and an associated manufacturing method. The reflective optical element (20) includes a multilayer system (23, 83) for reflecting an incident electromagnetic wave having an operating wavelength in the EUV range, the reflected wave having a phase φ, and a capping layer (25, 85) made from a capping layer material. The method includes determining a dependency according to which the phase of the reflected wave varies with the thickness d of the capping layer, determining a linearity-region in the dependency in which the phase of the reflected wave varies substantially linearly with the thickness of the capping layer, and creating a thickness profile in the capping layer such that both the maximum thickness and the minimum thickness in the thickness profile are in the linearity-region.
Abstract:
The invention concerns a projection objective of a microlithographic projection exposure apparatus designed for EUV, for imaging an object plane illuminated in operation of the projection exposure apparatus into an image plane. The projection objective has at least one mirror segment arrangement comprising a plurality of separate mirror segments. Associated with the mirror segments of the same mirror segment arrangement are partial beam paths which are different from each other and which respectively provide for imaging of the object plane (OP) into the image plane (IP). The partial beam paths are superposed in the image plane (IP). At least two partial beams which are superposed in the same point in the image plane (IP) were reflected by different mirror segments of the same mirror segment arrangement.
Abstract:
A deflection mirror (1, 501, etc.) for a microlithography projection exposure apparatus for illuminating an object field in an object plane of the projection exposure apparatus (1067) using the deflection mirror with grazing incidence. This deflection mirror has a substrate (3, 503, etc.) and at least one layer system (5, 505, etc.), and during operation light impinges on said mirror at a multiplicity of angles of incidence, wherein the layer system is designed such that, for light having a wavelength of less than 30 nm, for an angle of incidence of between 55° and 70°, the variation of the reflectivity is less than 20%, in particular less than 12%.