摘要:
The present invention provides methods of making composite materials comprising combining particles of crosslinked rubber with coagulated aqueous polymer dispersions to form a mixture in aqueous dispersion, and subjecting the aqueous dispersion mixture to solid state shear pulverization to form materials that can be processed as thermoplastics at crosslinked rubber concentrations of from 10 to as high as 95 wt. %, based on the total solids of the material. The method may further comprise kneading the pulverized product to form useful articles, such as roofing membranes and shoe soles.
摘要:
The present invention provides methods of making composite materials comprising combining particles of crosslinked rubber with coagulated aqueous polymer dispersions to form a mixture in aqueous dispersion, and subjecting the aqueous dispersion mixture to solid state shear pulverization to form materials that can be processed as thermoplastics at crosslinked rubber concentrations of from 10 to as high as 95 wt. %, based on the total solids of the material. The method may further comprise kneading the pulverized product to form useful articles, such as roofing membranes and shoe soles.
摘要:
The present invention provides thermoplastic roofing membranes comprising particles of crosslinked rubber and an aqueous (co)polymer dispersion. The thermoplastic roofing membranes are formed by combining particles of crosslinked rubber and a suspension polymer dispersion, or a coagulated aqueous latex (co)polymer dispersion, to form a mixture in aqueous dispersion, which aqueous dispersion mixture is subjected to solid state shear pulverization to form materials that can be processed as thermoplastics at crosslinked rubber concentrations of from 10 wt.% to as high as 95 wt.%, based on the total solids of the material. The method may further comprise kneading the pulverized product, followed by extrusion to form roofing membranes.
摘要:
The chemical mechanical polishing pad is suitable for polishing at least one of semiconductor, optical and magnetic substrates. The polishing pad includes a polymeric matrix with an elastomeric polymer distributed within the polymeric matrix. The polymeric matrix has a glass transition above room temperature; and the elastomeric polymer has an average length of at least 0.1 μm in at least one direction, represents 1 to 45 volume percent of polishing pad and has a glass transition temperature below room temperature. The polishing pad has an increased diamond conditioner cut rate in comparison to a polishing pad formed from the polymeric matrix without the elastomeric polymer.
摘要:
Technologies and implementations for providing melt processable poly(vinyl alcohol) blends and poly(vinyl alcohol) based membranes are generally disclosed.
摘要:
Technologies and implementations for providing melt processable poly(vinyl alcohol) blends and poly(vinyl alcohol) based membranes are generally disclosed.
摘要:
Exfolilation of graphene from graphite using multilayer coextrusion is generally disclosed. In some example embodiments, graphite may be dispersed within a first processing material, and the first processing material and a second processing material may be co-extruded through a plurality of series coupled layer multiplication dies to exfoliate graphene from the graphite. The graphene may be separated from the resulting multi-layered material. In some example embodiments, graphite flake and/or expanded graphite may be dispersed within the first processing material.
摘要:
Exfoliation of graphene from graphite using multilayer coextrusion is generally disclosed. In some example embodiments, graphite may be dispersed within a first processing material, and the first processing material and a second processing material may be co-extruded through a plurality of series coupled layer multiplication dies to exfoliate graphene from the graphite. The graphene may be separated from the resulting multi-layered material. In some example embodiments, graphite flake and/or expanded graphite may be dispersed within the first processing material.
摘要:
Disclosed are composites comprising water-soluble polymeric fibers dispersed in a biodegradable polymer matrix, as well as methods of making and using such composites.