摘要:
Semiconductor lasers are formed by integrating an electrically pumped semiconductor laser, a beam steering element and a vertical cavity surface emitting laser (VCSEL) together. The electrically pumped semiconductor laser is modulated to modulate a pump beam of photons at a first wavelength. The beam steering element directs the pump beam to the VCSEL to provide optical pumping. The VCSEL receives the pump beam of photons at the first wavelength and is stimulated to emit photons of a laser beam at a second wavelength longer than the first. In embodiments, index guiding is provided in the VCSEL to improve the optical pumping and emission efficiencies when the pump beam is modulated at high frequencies. Embodiments of the beam steering element include a silicon bench, a polymer element, and a facet included in the edge emitting laser and an external mirror. Embodiments of index guiding include an air gap to form a mesa and an oxide confinement ring shaped layer.
摘要:
An electrically pumped, long-wavelength VCSEL includes a long wavelength active region having electrical contacts on opposed sides thereof. A layer of semiconductor material is included in the active region having an electrically conductive portion defining a lasing aperture and current confinement volume with the conductive portion being limited by an electrically insulating portion. Windows are formed in the electrical contacts in alignment with the lasing aperture and mirror stacks are positioned on the long wavelength active region in each of the windows. At least one of the mirror stacks includes a metamorphic distributed Bragg reflector for heat conduction.
摘要:
A method of fabricating an electrically pumped, long-wavelength vertical cavity surface emitting laser includes epitaxially growing a stack of alternate layers of a first material and a second material on a compatible substrate. A long wave-length active region is epitaxially grown on the stack and a lasing aperture and current confinement volume are defined in the long wave-length active region. A first mirror stack is formed on the long wave-length active region and portions of one of the first material and the second material are removed to form a high reflectivity second mirror stack.
摘要:
A segmented-mirror vertical cavity surface emitting laser includes an active portion with an active region having at least one quantum well and a lateral dimension. A first mirror stack is positioned on a first opposed major surface of the active portion and extends laterally beyond the lateral dimension of the active region. A second mirror stack is positioned on the opposed major surface and extends laterally beyond the lateral dimension of the active region. The second mirror stack is segmented into two or more zones. In the case where there are two zones, in the first zone there would be a first reflectivity and a first thermal impedance, and in the second zone there would be a second reflectivity lower than the first reflectivity and a second thermal impedance lower than the first thermal impedance.
摘要:
The present invention is a method for securing internet communications between various voice over IP (VoIP) applications. The method enables VoIP Devices to operate within multiple IP networks which are physically connected to the VoIP Device in a manner that ensures inbound and outbound network traffic separation from other connected IP networks based on applicable Security Classifications of the VoIP Device and/or VoIP Device user.