摘要:
Provided is a light emitting device. Particularly, the light emitting device comprises a threshold voltage compensator. The threshold voltage compensator is connected between a gate and a drain of the driving TFT and has a gate connected to a second scan line to temporarily store at the storage capacitor a gate voltage reflecting a threshold voltage of the driving TFT in response to a second scan signal supplied by a second scan line and to transmit the data signal regardless of variations in the threshold voltage of the driving TFT when the output current is supplied to the light emitting diode.
摘要:
Provided is a light emitting device. Particularly, the light emitting device comprises a threshold voltage compensator. The threshold voltage compensator is connected between a gate and a drain of the driving TFT and has a gate connected to a second scan line to temporarily store at the storage capacitor a gate voltage reflecting a threshold voltage of the driving TFT in response to a second scan signal supplied by a second scan line and to transmit the data signal regardless of variations in the threshold voltage of the driving TFT when the output current is supplied to the light emitting diode.
摘要:
An electro-luminescence display which obtains proper color realization even though identical data driving waveforms are applied to each group of R, G and B pixel cells. In the display, a plurality of data lines cross a plurality of gate lines to define a plurality of pixel cell areas. A plurality of power supply lines pass through the pixel cell areas. A switching device is provided in each pixel cell area in such a manner to be electrically connected to the gate line and the data line. A plurality of driving devices are patterned based on a ratio of channel width to channel length in accordance with the type of pixel cell area. Each driving device having a gate connected to one electrode of the switching device and a source connected to the power supply line at each of the pixel cell areas. A plurality of EL diodes are connected to the plurality of driving devices, respectively. A wiring is commonly connected to the plurality of power supply lines. The R, G and B pixel cells are independently driven using different currents, although a common voltage is received by the driving devices.
摘要:
The present application relates to an organic thin film transistor with tunneling barrier layer and method of manufacturing the same improving the mobility properties of the thin film transistor and preventing the current crowding at low voltages. The organic thin film transistor includes a buffer layer on a substrate, a source and drain electrodes on the buffer layer, wherein each of the source and drain electrodes is in an island shape, a tunneling barrier layer on the source and drain electrodes, an organic semiconductor layer on the tunneling barrier layer, a gate insulation layer on the organic semiconductor layer, and a gate electrode overlapping both edges of the source and drain electrodes, and formed on the gate insulation layer, and wherein the tunneling barrier layer under the organic semiconductor layer is formed between the source and drain electrodes and the gate electrode.
摘要:
A hybrid switching mode liquid crystal display device according to the present invention comprises first and second substrates, a gate bus line and a transparent data bus line defining unit pixel region, a common line parallel to a gate bus line in the pixel region, a TFT on the cross of a data bus line and the gate bus lines in the pixel region, a common electrode and a storage capacitor line in the pixel region, a gate insulator having holes on the gate bus line, the common electrode, and the storage capacitor lines, a passivation layer having holes on the gate insulator, a first alignment layer with a fixed alignment direction on the passivation layer, at least one counter electrode on the second substrate applying vertical and inclined electric fields with the common and data electrodes on the first substrate, a black matrix on the counter electrodes to prevent light leakage which may be generated around TFT, the gate bus lines, and the data bus lines, a color filter layer on the black matrix and the second substrate, a second alignment layer on the color filter layer, and a liquid crystal layer between the first and second substrates.
摘要:
The present invention further relates to an OLED device, including R, G, B, and W subpixels. Specifically, the OLED device comprises a substrate; a thin film transistor (TFT) active layer disposed on the substrate, comprising a gate electrode, a gate insulating layer, an active layer, an interlayer insulating layer, a source electrode, and a drain electrode; an overcoat layer disposed over the thin film transistor; and a passivation layer disposed between the thin film transistor and the overcoat layer, wherein the passivation layer is absent in a path of a light or wherein the passivation layer is disposed in the path of the light as a single layer comprising silicon nitride.
摘要:
An organic electro luminescence device is provided. First and second substrates are arranged to face each other. A thin film transistor (TFT) is formed on the first substrate in each sub-pixel. A first electrode is formed on the first substrate and connected to the TFT. An organic electro luminescent layer and a second electrode are formed on the first electrode. A black matrix is disposed below the first electrode.
摘要:
A liquid crystal display device according to the present invention comprises first and second substrates, a gate bus line and a transparent data bus line defining unit pixel region, a common line parallel to a gate bus line in the pixel region, a TFT at a crossing of a data bus line and the gate bus lines in the pixel region, a common electrode and a storage capacitor line in the pixel region, a gate insulator having holes on the gate bus line, the common electrode, and the storage capacitor lines, a passivation layer having holes on the gate insulator, a first alignment layer with a fixed alignment direction on the passivation layer, and a liquid crystal layer between the first and second substrates.
摘要:
An organic thin film transistor and a method for manufacturing the same is disclosed, which can improve the device properties by decreasing a contact resistance which occurs in a contact area between an organic semiconductor layer and source/drain electrodes. The organic thin film transistor includes a gate electrode formed on a substrate, a gate insulation layer formed on the gate electrode, source and drain electrodes overlapped with both edges of the gate electrode and formed on the gate insulation layer, an organic semiconductor layer formed on the gate insulation layer including the source/drain electrodes, a first adhesive layer having hydrophilic properties formed between the gate insulation layer and the source/drain electrodes, and a second adhesive layer having hydrophobic properties formed between the organic semiconductor layer and the gate insulation layer.
摘要:
A method for manufacturing a thin film transistor is provided. In the method, a gate electrode is formed on a substrate. A crystalline gate insulating layer is formed on an entire surface of the substrate having the gate electrode formed thereon. A microcrystalline silicon layer and a doped amorphous silicon layer are sequentially formed on the crystalline gate insulating layer. A metal layer is deposited on the substrate including the crystalline gate insulating layer, the microcrystalline silicon layer and the doped amorphous silicon layer. Source and drain electrodes, an ohmic contact layer and an active layer are formed by etching predetermined portions of the metal layer and the doped amorphous silicon layer to expose a predetermined portion of the microcrystalline silicon layer.