Abstract:
Disclosed is a apparatus and a method for displaying various character effects on a character input screen of a mobile station using a differentiated graphic element according to a key input signal. In the method a visual character theme set by a user is displayed in a character input mode, and a character input effect corresponding to the visual character theme is shown according to a key input signal. Accordingly, since the mobile station can show a visual character input effect in every key input sequence by allowing the user to select a desired visual character theme in advance, an entertaining effect is added to a user interface of the mobile station.
Abstract:
A method for manufacturing a fine spheroidized steel sheet having an excellent heat treatment characteristic, the method including: i) manufacturing a high carbon slab that is formed of 0.3 to 1.0 wt % C, 0.1 to 1.2 wt % Mn, 0 to 0.4 wt % Si, 0.01 to 0.1 wt % Al, 0 to 0.01 wt % S, and balance Fe and an inevitably added impurity as residuals; ii) reheating the slab to a temperature of Ar3 transformation point or more; iii) roughing rolling the slab, and manufacturing a thin plate by performing finish rolling in an austenite region; iv) cooling the thin plate at a cooling speed of 50 to 300° C./sec; v) finishing the cooling of the thin plate at a temperature region of 400 to 650° C. and maintaining the temperature; vi) winding the thin plate at a temperature region of 450 to 700° C.; vii) performing cold rolling at a reduction ratio of 30% or more; and viii) spheroidizing annealing the cold rolled thin plate.
Abstract:
A method of fabricating a static random access memory device includes selectively removing an insulating film and growing a single crystalline silicon layer using selective epitaxy growth, the single crystalline silicon layer being grown in a portion from which the insulating film is removed; recessing the insulating film; and depositing an amorphous silicon layer on the single crystalline silicon layer and the insulating film, such that the amorphous silicon layer partially surrounds a top surface and side surfaces of the single crystalline silicon layer.
Abstract:
A display device and a driving method thereof in which if an input 2D/3D video signal is a 2D video signal, an image data signal is generated by applying a first gamma correction curved line. If the input 2D/3D video signal is a 3D video signal, an image data signal is generated by applying the second gamma correction curved line. Luminance of a maximum grayscale of the first gamma correction curved line is set to be lower than luminance of a maximum grayscale of the second gamma correction curved line. Therefore, it is possible to prevent luminance of the display device from deteriorating by a barrier in a 3D driving mode.
Abstract:
An in-plane mode liquid crystal display device (LCD) is provided that is capable of improving a contrast ratio by blocking a light leakage region formed by a column spacer. The LCD includes gate and data lines that are formed on a substrate and cross each other to define pixels. A switching device, parallel first and second electrodes that generate a horizontal electric field, and a column spacer are disposed at each pixel. The column spacers are disposed between opposing substrates and are aligned with black matrix or the data lines such that the columns formed by the column spacers overlap with bent portions of the data lines.
Abstract:
An organic light emitting display and a method for driving the same is disclosed. A pixel portion includes a plurality of pixels, which receive a plurality of scan signals, a plurality of emission control signals, and a plurality of data signals to display images. A data driver for generating and transferring the plurality of data signals to the pixel portion using video data. A scan driver transfers the plurality of scan signals and the plurality of emission control signals to the pixel portion. An optical sensor controls luminance of the pixel portion according to peripheral (or ambient) light. A current controller limits an electric current flowing through the pixel portion according to a sum of the video data input during a frame when the peripheral light sensed by the optical sensor has luminance equal to or greater than a predetermined value in order to control the luminance.
Abstract:
A keypad touch user interface method and a mobile terminal using the same are disclosed. If a touch is generated by a finger operation on a keypad installed with a touch sensor, the touch sensor detects the touch and a control unit identifies the type of the touch. According to the type of the touch, the control unit controls the display of a pointer on a display unit or displays an option window on the display unit. According to the result of identifying the type of the touch, if a new touch is generated by a finger in the state that another finger is touching a position on the keypad, the option window is displayed as with a right-click function of a mouse in a personal computing environment.
Abstract:
In a method of aligning a wafer, which is capable of precisely and rapidly aligning the wafer, and a wafer alignment apparatus using the method of aligning the wafer, a first wafer is aligned to form a first template pattern corresponding to an image of the first wafer. Image data of a second wafer is inputted. A kind of the second wafer is different from that of the first wafer. A second template pattern is formed by transforming the first template pattern in response to the image data of the second wafer. The second wafer is then aligned in response to the second template pattern. Accordingly, the template pattern is formed using the image data to align the wafer although wafers having different images are inspected, thereby rapidly forming the template pattern.
Abstract:
An alignment mark and an exposure alignment system and method using the alignment mark for aligning wafers are described. The alignment mark is formed of a plurality of mesa or trench type unit marks that are aligned in an inline pattern within an underlying layer under a layer to which a chemical mechanical polishing process is applied to form an alignment signal during an alignment process, thereby preventing a dishing phenomenon caused by the chemical mechanical process.
Abstract:
In a method of fabricating a semiconductor device, a substrate including a circuit area and an overlay mark area is provided. Conductive gate patterns are formed on the substrate in the circuit area such that the overlay mark area is free of the gate patterns, and conductive contact patterns are formed on the substrate between the gate patterns in the circuit area. A mirror pattern is formed on the substrate in the overlay mark area, where the mirror pattern and the contact patterns comprising a same reflective material. Related semiconductor devices, overlay marks, and fabrication methods are also discussed.