摘要:
An OLED is disclosed, which has a substrate having a first conducting area, a second conducting area, and an active area; a plurality of connecting wires located outside of said active area on said substrate; a plurality of stripes of first electrodes located in the active area and connected to a connecting wire; a plurality of first conducting lines located in the first conducting area; a plurality of second conducting lines located in said second conducting area; a plurality of second electrodes located in the active area; an upper cover mounted on said active area for covering said active area; a sealing layer sandwiched between said upper cover and said substrate for sealing the active area and isolating said active area from air or water; and an insulating layer filled over said first conducting lines, said second conducting lines, and the connecting wires for isolating from air or water.
摘要:
A light-mixing type LED package structure for increasing color render index includes a substrate unit, a light-emitting unit, a frame unit and a package unit. The light-emitting unit has a first light-emitting module for generating a first color temperature and a second light-emitting module for generating a second color temperature. The frame unit has two annular resin frames surroundingly formed on the top surface of the substrate unit by coating. The two annular resin frames respectively surround the first light-emitting module and the second light-emitting module in order to form two resin position limiting spaces above the substrate unit. The package unit has a first translucent package resin body and a second translucent package resin body both disposed on the substrate unit and respective covering the first light-emitting module and the second light-emitting module.
摘要:
A light-mixing type LED package structure for increasing color render index includes a substrate unit, a light-emitting unit, a frame unit and a package unit. The light-emitting unit has a first light-emitting module for generating a first color temperature and a second light-emitting module for generating a second color temperature. The frame unit has two annular resin frames surroundingly formed on the top surface of the substrate unit by coating. The two annular resin frames respectively surround the first light-emitting module and the second light-emitting module in order to form two resin position limiting spaces above the substrate unit. The package unit has a first translucent package resin body and a second translucent package resin body both disposed on the substrate unit and respective covering the first light-emitting module and the second light-emitting module.
摘要:
The present invention provides a reagent for rapidly attaining thermal equilibrium in a biological and/or chemical reaction, which comprises Au nanoparticles; wherein the Au nanoparticles have a Au metal core covalently bonding to a weak acid functional group, and the Au nanoparticles are aqueous. A method for rapidly attaining thermal equilibrium in a biological and/or chemical reaction and a method for producing the reagent are also provided.
摘要:
An LED package structure for increasing light-emitting efficiency and controlling light-projecting angle includes a substrate unit, a light-emitting unit, a light-reflecting unit and a package unit. The substrate unit has a substrate body and a chip-placing area disposed on a top surface of the substrate body. The light-emitting unit has a plurality of LED chips electrically disposed on the chip-placing area. The light-reflecting unit has an annular reflecting resin body surroundingly formed on the top surface of the substrate body by coating. The annular reflecting resin body surrounds the LED chips that are disposed on the chip-placing area to form a resin position limiting space above the chip-placing area. The package unit has a translucent package resin body disposed on the top surface of the substrate body in order to cover the LED chips. The position of the translucent package resin body is limited in the resin position limiting space.
摘要:
An LCD panel including a first substrate, a second substrate, a black matrix, a liquid crystal (LC) layer, first photo spacers and second photo spacers is provided. The first and the second substrates are substantially parallel. The LC layer is disposed between the first and the second substrates. The black matrix disposed on the first substrate surrounds display regions and defines a non-display region. The first photo spacers contact the second substrate and are disposed on the black matrix. The second photo spacers are disposed on the black matrix. Channels are formed between the second photo spacers, such that LC molecules of the LC layer flow between the display regions through the channels. The width of the channels between any two of the adjacent second photo spacers substantially ranges from 2˜10 μm. The dimension of the first photo spacers is substantially greater than that of the second photo spacers.
摘要:
A wheel structure of the electric wheelchair or the like comprises an axle, a brake device, and a wheel frame. The axle has an inner end which is fitted into an axle tube, and an outer end on which the brake device and the wheel frame are mounted. The brake device is formed of a brake seat, a brake shoe mounted on the brake seat, and an actuating rod mounted on the brake seat. The brake seat is provided with a tubular portion for locating the brake seat in such a way that the tubular portion is fitted over the axle tube. The brake seat is further located by a locating plate which is fastened at one end with the brake seat and at other end with a body frame of the electric wheelchair or the like.
摘要:
A light-mixing multichip package structure includes a substrate unit, a light-emitting unit, a frame unit, and a package unit. The light-emitting unit includes at least one first light-emitting module with red light-emitting chips and at least one second light-emitting module with blue light-emitting chips. The frame unit includes at least one first continuous colloid frame and at least one second continuous colloid frame respectively surrounding the first light-emitting module and the second light-emitting module. The package unit includes a transparent colloid body and a phosphor colloid body respectively covering the first light-emitting module and the second light-emitting module. Hence, when the red light source generated by matching the red light-emitting chips and the transparent colloid body and the white light source generated by matching the blue light-emitting chips and the phosphor colloid body are mixed with each other, the CRI of the light-mixing multichip package structure can be increased.
摘要:
An LED package structure for increasing light-emitting efficiency and controlling light-projecting angle includes a substrate unit, a light-emitting unit, a light-reflecting unit and a package unit. The substrate unit has a substrate body and a chip-placing area disposed on a top surface of the substrate body. The light-emitting unit has a plurality of LED chips electrically disposed on the chip-placing area. The light-reflecting unit has an annular reflecting resin body surroundingly formed on the top surface of the substrate body by coating. The annular reflecting resin body surrounds the LED chips that are disposed on the chip-placing area to form a resin position limiting space above the chip-placing area. The package unit has a translucent package resin body disposed on the top surface of the substrate body in order to cover the LED chips. The position of the translucent package resin body is limited in the resin position limiting space.
摘要:
An organic electroluminescent panel includes a plurality of pixels disposed on a substrate. The pixel comprises an organic electroluminescent device, at least one pixel-defining layer, and at least one separator. The organic electroluminescent device comprises, in sequence, a first electrode, at least one organic functional layer, and a second electrode. The first electrode is disposed on the substrate. The pixel-defining layer is disposed on the first electrode or on the substrate. The separator is disposed on the pixel-defining layer. The organic functional layer is disposed on the first electrode or on the separator. The second electrode is disposed on the organic functional layer. In this case, the pixel-defining layer and the separator are made of negative photoresist. Furthermore, a method for manufacturing the organic electroluminescent panel is disclosed.