摘要:
A method of manufacturing a microelectronic device including forming a dielectric layer surrounding a dummy feature located over a substrate, removing the dummy feature to form an opening in the dielectric layer, and forming a metal-silicide layer conforming to the opening. The metal-silicide layer may then be annealed.
摘要:
A method of manufacturing a microelectronic device including forming an opening in a dielectric layer located over a substrate, forming a semi-conductive layer substantially conforming to the opening, and forming a conductive layer substantially conforming to the semi-conductive layer. At least a portion of the semi-conductive layer is doped by implanting through the conductive layer. The semi-conductive layer and the conductive layer may then be annealed.
摘要:
A method of manufacturing a microelectronic device including forming a dielectric layer surrounding a dummy feature located over a substrate, removing the dummy feature to form an opening in the dielectric layer, and forming a metal-silicide layer conforming to the opening by a metal deposition process employing a target which includes metal and silicon. The metal-silicide layer may then be annealed.
摘要:
A method of manufacturing a microelectronic device including forming a dielectric layer surrounding a dummy feature located over a substrate, removing the dummy feature to form an opening in the dielectric layer, and forming a metal-silicide layer conforming to the opening. The metal-silicide layer may then be annealed.
摘要:
A method of manufacturing a microelectronic device including forming a dielectric layer surrounding a dummy feature located over a substrate, removing the dummy feature to form an opening in the dielectric layer, and forming a metal-silicide layer conforming to the opening by a metal deposition process employing a target which includes metal and silicon. The metal-silicide layer may then be annealed.
摘要:
A method of manufacturing a microelectronic device including forming an opening in a dielectric layer located over a substrate, forming a semi-conductive layer substantially conforming to the opening, and forming a conductive layer substantially conforming to the semi-conductive layer. At least a portion of the semi-conductive layer is doped by implanting through the conductive layer. The semi-conductive layer and the conductive layer may then be annealed.
摘要:
A semiconductor device having an NMOS and a PMOS device formed thereon is provided. The NMOS device has additional spacers formed alongside the gate electrode to allow the silicide region to be formed farther away from the gate electrode. By placing the silicide region farther away from the gate electrode, the effects of the lateral encroachment of the silicide region under the spacers is reduced, particularly the leakage. A method of forming the semiconductor device may include forming a plurality of spacers alongside the gate electrodes of a PMOS and an NMOS device, and one or more implants may be performed to implant impurities into the source/drain regions of the PMOS and NMOS devices. One or more of the spacers alongside the gate electrode of the PMOS device may be selectively removed. Thereafter, the source/drain regions may be silicided.
摘要:
A semiconductor device having an NMOS and a PMOS device formed thereon is provided. The NMOS device has additional spacers formed alongside the gate electrode to allow the silicide region to be formed farther away from the gate electrode. By placing the silicide region farther away from the gate electrode, the effects of the lateral encroachment of the silicide region under the spacers is reduced, particularly the leakage. A method of forming the semiconductor device may include forming a plurality of spacers alongside the gate electrodes of a PMOS and an NMOS device, and one or more implants may be performed to implant impurities into the source/drain regions of the PMOS and NMOS devices. One or more of the spacers alongside the gate electrode of the PMOS device may be selectively removed. Thereafter, the source/drain regions may be silicided.
摘要:
A method for integrally forming a metal-oxide-semiconductor (MOS) device and an electrical fuse device on a semiconductor substrate includes the following steps. An isolation structure is formed on the semiconductor substrate. A dielectric layer is deposited over the isolation structure and the semiconductor substrate. A metal layer is deposited on the dielectric layer. A polysilicon layer is deposited on the metal layer. The dielectric layer, the metal layer and the polysilicon layer are patterned into a first stack of the dielectric layer, the metal layer and the polysilicon layer on the isolation structure for functioning as the electrical fuse device, and a second stack of the dielectric layer, the metal layer and the polysilicon layer on the semiconductor substrate for functioning as a gate of the MOS device.
摘要:
A semiconductor structure having a hybrid crystal orientation is provided. The semiconductor structure includes an insulator layer, e.g., a buried oxide (BOX), on a first semiconductor layer, and a second semiconductor layer on the buried oxide, wherein the first and second semiconductor layers have a first and a second crystal orientation, respectively. A first region of the second semiconductor layer is replaced with an epitaxially grown layer of the first semiconductor layer, thereby providing a substrate having a first region with a first crystal orientation and a second region with a second crystal orientation. An isolation structure is formed to isolate the first and second regions. Thereafter, NMOS and PMOS transistors may be formed on the substrate in the region having the crystal orientation that is the most appropriate.