摘要:
An MRAM is disclosed that has a MTJ comprised of a ferromagnetic layer with a magnetization direction along a first axis, a super-paramagnetic (SP) free layer, and an insulating layer formed therebetween. The SP free layer has a remnant magnetization that is substantially zero in the absence of an external field, and in which magnetization is roughly proportional to an external field until reaching a saturation value. In one embodiment, a separate storage layer is formed above, below, or adjacent to the MTJ and has uniaxial anisotropy with a magnetization direction along its easy axis which parallels the first axis. In a second embodiment, the storage layer is formed on a non-magnetic conducting spacer layer within the MTJ and is patterned simultaneously with the MTJ. The SP free layer may be multiple layers or laminated layers of CoFeB. The storage layer may have a SyAP configuration and a laminated structure.
摘要:
An MRAM is disclosed that has a MTJ comprised of a ferromagnetic layer with a magnetization direction along a first axis, a super-paramagnetic (SP) free layer, and an insulating layer formed therebetween. The SP free layer has a remnant magnetization that is substantially zero in the absence of an external field, and in which magnetization is roughly proportional to an external field until reaching a saturation value. In one embodiment, a separate storage layer is formed above, below, or adjacent to the MTJ and has uniaxial anisotropy with a magnetization direction along its easy axis which parallels the first axis. In a second embodiment, the storage layer is formed on a non-magnetic conducting spacer layer within the MTJ and is patterned simultaneously with the MTJ. The SP free layer may be multiple layers or laminated layers of CoFeB. The storage layer may have a SyAP configuration and a laminated structure.
摘要:
An MRAM is disclosed that has a MTJ comprised of a ferromagnetic layer with a magnetization direction along a first axis, a super-paramagnetic (SP) free layer, and an insulating layer formed therebetween. The SP free layer has a remnant magnetization that is substantially zero in the absence of an external field, and in which magnetization is roughly proportional to an external field until reaching a saturation value. In one embodiment, a separate storage layer is formed above, below, or adjacent to the MTJ and has uniaxial anisotropy with a magnetization direction along its easy axis which parallels the first axis. In a second embodiment, the storage layer is formed on a non-magnetic conducting spacer layer within the MTJ and is patterned simultaneously with the MTJ. The SP free layer may be multiple layers or laminated layers of CoFeB. The storage layer may have a SyAP configuration and a laminated structure.
摘要:
An improved tunneling barrier layer is formed for use in a MTJ device. This is accomplished by forming the tunneling barrier layer in two steps. First a layer of magnesium is deposited by DC sputtering and converted to magnesium oxide through radical oxidation. This is followed by a second, thinner, magnesium layer that is converted to magnesium oxide through normal oxidation. Optionally, there may also be a thin layer of magnesium on the two magnesium oxide layers.
摘要:
An MTJ (magnetic tunneling junction) MRAM (magnetic random access memory) has a tunneling barrier layer of substantially uniform and homogeneous Al2O3 stoichiometry. The barrier layer is formed by depositing Al on a CoFe layer or a CoFe—NiFe bilayer having an oxygen surfactant layer formed thereon, then oxidizing the Al by radical oxidation. The underlying surfactant layer contributes oxygen to the bottom surface of the Al, forming an initial amorphous Al2O3 layer. This layer produces small, uniform grains in the remaining Al layer, which promotes a uniform oxidation of the Al between its upper and lower surfaces by the subsequent radical oxidation. A final annealing process to set a pinned layer magnetization enhances the homogeneous oxidation of the layer.
摘要翻译:MTJ(磁性隧道结)MRAM(磁性随机存取存储器)具有基本上均匀且均匀的Al 2 O 3 O 3化学计量的隧道势垒层。 通过在其上形成有氧表面活性剂层的CoFe层或CoFe-NiFe双层上沉积Al,然后通过自由基氧化来氧化Al而形成阻挡层。 下面的表面活性剂层向Al的底表面贡献氧,形成初始的非晶Al 2 O 3层。 该层在剩余的Al层中产生小的均匀的晶粒,这促进了Al在其上表面和下表面之间的随后的自由基氧化的均匀氧化。 设置钉扎层磁化的最终退火工艺增强了层的均匀氧化。
摘要:
Fe rich CoFe can be used in AP1 to enhance CPP GMR. However, this is found to degrade the electro-migration performance of the device. This problem has been solved by using an AP1 that is a laminate of several CoFe(25%) layers, separated from one another by copper layers. Ultra-thin layers of iron-rich CoFe are then inserted at all the copper-CoFe interfaces.
摘要:
A CPP-GMR spin value sensor structure with an improved MR ratio and increased resistance is disclosed. All layers except certain pinned layers, copper spacers, and a Ta capping layer are oxygen doped by adding a partial O2 pressure to the Ar sputtering gas during deposition. Oxygen doped CoFe free and pinned layers are made slightly thicker to offset a small decrease in magnetic moment caused by the oxygen dopant. Incorporating oxygen in the MnPt AFM layer enhances the exchange bias strength. An insertion layer such as a nano-oxide layer is included in one or more of the free, pinned, and spacer layers to increase interfacial scattering. The thickness of all layers except the copper spacer may be increased to enhance bulk scattering. A CPP-GMR single or dual spin valve of the present invention has up to a threefold increase in resistance and a 2 to 3% increase in MR ratio.
摘要:
Patterned, longitudinally and transversely antiferromagnetically exchange biased GMR sensors are provided which have narrow effective trackwidths and reduced side reading. The exchange biasing significantly reduces signals produced by the portion of the ferromagnetic free layer that is underneath the conducting leads while still providing a strong pinning field to maintain sensor stability. In the case of the transversely biased sensor, the magnetization of the free and biasing layers in the same direction as the pinned layer simplifies the fabrication process and permits the formation of thinner leads by eliminating the necessity for current shunting.
摘要:
A method of forming a CPP MTJ MRAM element that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer. The device includes a tunneling barrier layer of MgO and a non-magnetic CPP layer of Cu or Cr and utilizes a novel synthetic free layer having three ferromagnetic layers mutually exchange coupled in pairwise configurations. The free layer comprises an inner ferromagnetic and two outer ferromagnetic layers, with the inner layer being ferromagnetically exchange coupled to one outer layer and anti-ferromagnetically exchange coupled to the other outer layer. The ferromagnetic coupling is very strong across an ultra-thin layer of Ta, Hf or Zr of thickness preferably less than 0.4 nm.
摘要:
An MRAM is disclosed that has a MTJ comprised of a ferromagnetic layer with a magnetization direction along a first axis, a super-paramagnetic (SP) free layer, and an insulating layer formed therebetween. The SP free layer has a remnant magnetization that is substantially zero in the absence of an external field, and in which magnetization is roughly proportional to an external field until reaching a saturation value. In one embodiment, a separate storage layer is formed above, below, or adjacent to the MTJ and has uniaxial anisotropy with a magnetization direction along its easy axis which parallels the first axis. In a second embodiment, the storage layer is formed on a non-magnetic conducting spacer layer within the MTJ and is patterned simultaneously with the MTJ. The SP free layer may be multiple layers or laminated layers of CoFeB. The storage layer may have a SyAP configuration and a laminated structure.