摘要:
A semiconductor device for ESD protection includes a semiconductor substrate of a first conductivity type and a well region of a second conductivity type formed within the substrate. The well region is characterized by a first depth. The device includes an MOS transistor, a first bipolar transistor, and a second bipolar transistor. The MOS transistor includes a first lightly doped drain (LDD) region of a second depth within the well region, and a drain region and an emitter region within in the first LDD region. The emitter region is characterized by a second conductivity type. The first bipolar transistor is associated with the emitter region, the first LDD region, and the well region, and is characterized by a first trigger voltage. The second bipolar transistor is associated with the first LDD region, the well region, and the substrate, and is characterized by a second trigger voltage.
摘要:
A semiconductor device for ESD protection includes a semiconductor substrate of a first conductivity type and a well region of a second conductivity type formed within the substrate. The well region is characterized by a first depth. The device includes an MOS transistor, a first bipolar transistor, and a second bipolar transistor. The MOS transistor includes a first lightly doped drain (LDD) region of a second depth within the well region, and a drain region and an emitter region within in the first LDD region. The emitter region is characterized by a second conductivity type. The first bipolar transistor is associated with the emitter region, the first LDD region, and the well region, and is characterized by a first trigger voltage. The second bipolar transistor is associated with the first LDD region, the well region, and the substrate, and is characterized by a second trigger voltage.
摘要:
A semiconductor device for ESD protection includes a semiconductor substrate of a first conductivity type and a well region of a second conductivity type formed within the substrate. The well region is characterized by a first depth. The device includes an MOS transistor, a first bipolar transistor, and a second bipolar transistor. The MOS transistor includes a first lightly doped drain (LDD) region of a second depth within the well region, and a drain region and an emitter region within in the first LDD region. The emitter region is characterized by a second conductivity type. The first bipolar transistor is associated with the emitter region, the first LDD region, and the well region, and is characterized by a first trigger voltage. The second bipolar transistor is associated with the first LDD region, the well region, and the substrate, and is characterized by a second trigger voltage.
摘要:
A semiconductor device for ESD protection includes a semiconductor substrate of a first conductivity type and a well region of a second conductivity type formed within the substrate. The well region is characterized by a first depth. The device includes an MOS transistor, a first bipolar transistor, and a second bipolar transistor. The MOS transistor includes a first lightly doped drain (LDD) region of a second depth within the well region, and a drain region and an emitter region within in the first LDD region. The emitter region is characterized by a second conductivity type. The first bipolar transistor is associated with the emitter region, the first LDD region, and the well region, and is characterized by a first trigger voltage. The second bipolar transistor is associated with the first LDD region, the well region, and the substrate, and is characterized by a second trigger voltage.
摘要:
A method for making a semiconductor device includes providing a substrate of a first conductivity type and having a surface region, forming a well region of a second conductivity type and having a first depth in the substrate, adding a gate dielectric layer overlying the surface region, adding a gate layer overlying the gate dielectric layer, forming a first LDD region of the first conductivity type and having a second depth within the well region, forming an emitter region of the second conductivity type within the first LDD region, and forming a second LDD region of the first conductivity type with the well region, a channel region separates the first and second LDD regions. The method further includes forming a source region being of the first conductivity type within the second LDD region and adding an output pad coupled to both the drain and emitter regions.
摘要:
An ESD device includes a first and second well regions disposed in a semiconductor substrate. The first well region comprises a plurality of N wells spaced at a predetermined length. A heavily doped P+ region and a heavily doped N+ region are disposed in each of the N wells. The heavily doped N+ region is coupled to Vdd and a heavily doped P+ region in an N well is electrically coupled to the heavily doped N+ region in an adjacent N well. The second well region comprises a P well abutting an N well. A heavily doped P+ region and a heavily doped N+ region are disposed in the P well. The heavily doped N+ region in the P well is electrically coupled to the heavily doped P+ region of the adjacent N well in common with an I/O circuit, and the heavily doped P+ region is coupled to Vss.
摘要:
An ESD device includes a first and second well regions disposed in a semiconductor substrate. The first well region comprises a plurality of N wells spaced at a predetermined length. A heavily doped P+ region and a heavily doped N+ region are disposed in each of the N wells. The heavily doped N+ region is coupled to Vdd and a heavily doped P+ region in an N well is electrically coupled to the heavily doped N+ region in an adjacent N well. The second well region comprises a P well abutting an N well. A heavily doped P+ region and a heavily doped N+ region are disposed in the P well. The heavily doped N+ region in the P well is electrically coupled to the heavily doped P+ region of the adjacent N well in common with an I/O circuit, and the heavily doped P+ region is coupled to Vss.
摘要:
An integrated circuit device comprising an improved bonding pad structure. The device has a semiconductor substrate. A plurality of active MOS devices are formed on the semiconductor substrate. The device has an interlayer dielectric layer overlying the plurality of active MOS devices and at least one single metal bonding pad formed on the interlayer dielectric layer and directly over at least one of the active devices. At least four edge regions are formed on a square shape of the at least one single metal bonding pad. An angled cut region is formed on each of the four edge regions. The device has a buffer metal layer free region located between the plurality of active MOS devices and the at least one single metal bonding pad. The buffer metal layer free region does not have a buffer metal layer in the interlayer dielectric layer.
摘要:
An e-fuse and an e-fuse control circuit are provided. The e-fuse includes a polysilicon layer and a metal silicide layer stacked on the polysilicon layer. The e-fuse operates in an open state when the silicide layer is broken by burning while one portion of the polysilicon layer is exposed.
摘要:
A capacitive touch screen sensing apparatus is provided. The apparatus includes a protecting layer; a sensing layer under the protecting layer for sensing a touch to generate a position signal; and a DC common voltage signal layer electrically connected with a DC voltage for shielding against signal interferences.