Abstract:
A pipe fitting includes a first pipework with a hollow interior, a casing pipe sheathed onto the first pipework, a stopping portion disposed at an end of the first pipework, a first junction disposed at another end of the first pipework and interconnected to the interior, at least one penetrating hole disposed on the first pipework and interconnected with the interior, and two first washers with an interval apart such that the penetrating hole is situated between the two first washers. The casing pipe has a circular sheath and a cold water junction disposed on an external wall of the circular sheath, and the circular sheath has a circular sheath hole sheathed onto the first pipework, such that the internal wall of the circular sheath is in a close contact with the two first washers and the cold water junction is interconnected with the interior of the first pipework.
Abstract:
A water-cooling heat dissipator mounted on an electronic heat-generating element includes a water-cooling head member and at least one heat pipe. The water-cooling head member includes a first cover and a second cover connected to the first cover. Both ends of the first cover and the second cover are formed with a receiving portion corresponding to each other, respectively. The receiving portions are adapted to be connected to the conduit connectors. A channel portion is formed between the first cover and the second cover for receiving one end of the heat pipe. With the above arrangement, the present invention can perform the heat dissipations of different heat-generating elements simultaneously to make the heat-generating elements operate under acceptable working temperatures. Further, the present invention can be widely used in the heat dissipation of compact electronic products.
Abstract:
An apparatus and a method for reducing solvent residue in a solvent-type dryer for drying semiconductor wafers have been disclosed. The apparatus is constructed by a tank body, a wafer carrier, an elevator means, a tank cover, a solvent vapor conduit and an exhaust means. The exhaust means is provided for fluid communication with a compartment in the tank cover such that any residual solvent vapor or any organic residue in the compartment left from the wafer drying cycle can be evacuated to a factory exhaust system. The present invention novel method for reducing solvent or organic residue in the dryer can be carried out, after the removal of the dried wafers from the dryer, by evacuating the compartment in the tank cover for a time period of between about 30 sec. and about 300 sec. until all residual solvent vapor or organic residue is evacuated.
Abstract:
A heat-dissipating device includes a MOSFET heat dissipator, a south bridge heat dissipator, a north bridge heat dissipator and a water block connector. A heat pipe is provided between each heat dissipator to connect these heat dissipators in series. Further, the north bridge heat dissipator has a heat-dissipating bottom plate and a heat-dissipating body attached to a half portion of the heat-dissipating bottom plate. Further, the water block connector comprises a hollow base and two connecting tubes that are provided on two locations of the base and in communication with each other. The base of the water block connector is attached to the other half portion of the heat-dissipating bottom plate of the north bridge heat dissipater. When the water cooling is used, the two connecting tubes of the water block connector can be connected in series with a water-cooling circulation system.
Abstract:
A pipe connector includes a pipe-connecting piece hollowed in its interior, a pipe-covering piece covered on the pipe-connecting piece, and a sealing piece detachably provided on the outside of one end of the pipe-covering piece. The pipe-connecting piece has a first connecting port for communicating with its interior. At least one through hole is provided on the pipe-connecting piece for communicating with its interior. Further, two leakage-proof washers are provided at an interval with the through hole disposed therebetween. The pipe-covering piece has an annular sheath and a second connecting port provided on the outer wall of the annular sheath. The annular sheath is covered on the pipe-connecting piece to allow its inner wall to tightly contact with the two leakage-proof washers, so that the second connecting port is in communication with the interior of the pipe-connecting piece.
Abstract:
A continuous and integrated cleaning/preparation process is described to condition a silicon surface for the formation of a high quality ultra thin gate oxide described. The process is conducted with the wafer surface immersed in an aqueous solution the composition of which is varied continuously according to the steps of the process. The process includes the initial removal of contaminants and particulates followed by the removal of a native oxide. Next the silicon surface is dressed in the present of both HF and ozone by removing a thin surface layer. Any interfacial contamination or surface structural defects which lay under the native oxide are thereby removed. Next a high quality chemical oxide is grown by the action of the ozone in the aqueous bath. The chemical oxide is found to be of higher purity and structural quality than native oxide and provides a superior passivation of the active surface prior to gate oxidation. The chemical oxide is incorporated into the final gate oxide and, because of it's high quality, results in improved device performance of the final gate oxide.
Abstract:
A heat dissipation device includes a base, a first heat pipe, a first heat sink, a second heat pipe, a thermoelectric cooler and a second heat sink. The first heat pipe includes a first end and a second end. The first end of the first heat pipe is connected to the base. The second end of the first heat pipe is connected to a bottom of the first heat sink. The second heat pipe includes a first end and a second end. The first end of the second heat pipe is connected to the base. The second end of the second heat pipe is connected to a top end of the thermoelectric cooler. The second heat sink is mounted on a bottom of the thermoelectric cooler and located at a side of the first heat sink. The thermoelectric cooler spaces apart from the heat generating member. As such, the water generated by the thermoelectric cooler during a cooling process won't spread to the heat generating member and a short circuit of the heat generating member can be avoided.
Abstract:
A heat dissipating assembly includes a first cover and a second cover securely connected to the first cover. The first cover has a substantially U-shaped configuration and two first tube connecting portions formed on two ends thereof and a first arcuate path defined therein. The second cover has a substantially U-shaped configuration and two second tube connecting portions formed on two ends thereof to correspond to the two first tube connecting portions to respectively define a first tube receiving space to securely receive therein an inlet pipe and a second tube receiving space to securely receive therein an outlet pipe and a second arcuate path defined therein to correspond to the first arcuate path.
Abstract:
An electrostatic charge-free solvent-type dryer for drying semiconductor wafers after a wet bench process is disclosed in a preferred embodiment and in an alternate embodiment. In the preferred embodiment, the electrostatic charge-free solvent-type dryer is constructed by a tank body, a wafer carrier, an elevator means, a tank cover and a conduit for feeding the flow of solvent vapor. At least one of the tank cover, the conduit for feeding the flow of solvent vapor and the plurality of partition plates is fabricated of a non-electrostatic material such that electrostatic charge is not generated in the flow of solvent vapor. In the alternate embodiment, a deionizer is further provided in the tank cavity for producing a flux of positive ions to neutralize any negative ions that are possibly produced in the flow of solvent vapor.
Abstract:
A heat dissipating module includes a first heat conducting plate, a second heat conducting plate and at least one heat pipe. The second heat conducting plate is disposed opposite to the first heat conducting plate. Each of the at least one heat pipe includes a first fixing portion, a first curved portion, a second fixing portion, a second curved portion and a connecting portion. The first fixing portion is positioned on the first heat conducting plate and the second fixing portion is positioned on the second heat conducting plate. The first curved portion is curved and extended from the first fixing portion. The second curved portion is curved and extended from the second fixing portion. The connecting portion is connected between the first curved portion and the second curved portion. At least parts of the first curved portion and at least parts of the second curved portion are not coplanar.