Abstract:
In a thermally regulated climate chamber for testing equipment, a thermoelectric unit is arranged through the wall of the climate chamber, each thermoelectric unit having two faces, an internal face inside the climate chamber and an external face outside the climate chamber, wherein a heat exchange end for an external face of a thermoelectric unit of a secondary thermal regulation circuit is placed in thermal contact with each external face of thermoelectric unit, the secondary thermal regulation circuit being external to the climate chamber and including a heat-transfer fluid circuit, a cold source, a hot source, a mixing device, a circulation pump and sensors. A chamber temperature regulation system controls the electric current of the thermoelectric unit and to control at least the mixing device and the circulation pump of the secondary thermal regulation circuit as a function of a chamber temperature setpoint and of sensor measurements.
Abstract:
A medical grade cooler or freezer uses a Peltier system without the use of vapor compression refrigeration. An opening may be cut through a wall, for example, a top, bottom, rear or side wall, of the cooler or freezer and the Peltier device sealed within that opening with the hot side exposed outside of the cooler or freezer and the cold side exposed inside the cooler. When a voltage is applied to the Peltier device, the interior temperature of the cooler may be reduced. The Peltier devices can also be reversed by applying voltage in the opposite direction to remove heat from outside of the cooler and pump heat into the cooler or freezer.
Abstract:
A precursor vessel cooling assembly, a reactor system including the assembly, and methods of using the assembly and system are disclosed. The precursor vessel cooling assembly includes a thermoelectric cooling device and a fluid-cooled plate to maintain a desired temperature of a precursor vessel or other portion of the precursor vessel cooling assembly.
Abstract:
A refrigerator that has a fresh food compartment, a freezer compartment, and a door that provides access to the fresh food compartment is disclosed. An icemaker is mounted remotely from the freezer compartment. The icemaker includes an ice mold with an icemaking cycle having a liquid to ice phase change. A thermoelectric device has a cold side and a warm side. A controller is in operable communication with an input to the thermoelectric device. A sensor is in operable communication with the input to the thermoelectric device and the controller. A feedback response from the input to the thermoelectric device monitors the liquid to ice phase change of the icemaking cycle.
Abstract:
An instrument for performing highly accurate PCR employing an assembly, a heated cover, and an internal computer, is provided. The assembly is made up of a sample block, a number of Peltier thermal electric devices, and a heat sink, clamped together. A control algorithm manipulates the current supplied to thermoelectric coolers such that the dynamic thermal performance of a block can be controlled so that pre-defined thermal profiles of sample temperature can be executed. The sample temperature is calculated instead of measured using a design specific model and equations. The control software includes calibration diagnostics which permit variation in the performance of thermoelectric coolers from instrument to instrument to be compensated for such that all instruments perform identically. The block/heat sink assembly can be changed to another of the same or different design. The assembly carries the necessary information required to characterize its own performance in an on-board memory device, allowing the assembly to be interchangeable among instruments while retaining its precision operating characteristics.
Abstract:
According to certain embodiments, a refrigeration system comprises first and second evaporators, first and second compressors, and a gas cooler. The first and second evaporators receive liquid refrigerant from a flash tank and evaporate the refrigerant to cool a first case and a second case, respectively. The second case has a higher temperature set point than the first case. The first compressor compresses the refrigerant discharged from the first evaporator. The second compressor compresses the refrigerant discharged from the first compressor, flash gas from the flash tank, and the refrigerant discharged from the second evaporator. The gas cooler comprises an air-cooled stage that cools the refrigerant discharged from the second compressor and an evaporative stage that cools the refrigerant discharged from the air-cooled stage. The gas cooler further comprises an outlet that supplies the cooled refrigerant to the flash tank through an expansion valve.
Abstract:
An air-conditioning apparatus includes a refrigerant circuit including a compressor, a first refrigerant flow switching device, a plurality of intermediate heat exchangers, a first expansion device, and a heat-source-side heat exchanger, through all of which a refrigerant circulates and all of which in combination form a refrigeration cycle; and a heat medium circuit including the plurality of intermediate heat exchangers, a pump, and a plurality of use-side heat exchangers, through all of which a heat medium circulates. The air-conditioning apparatus further includes a heat medium energy storage that is connected to the heat medium circuit and stores the heat medium; and an intra-storage heat exchanger that is connected to the refrigerant circuit and heats or cools the heat medium in the heat medium energy storage by using the heat-source-side refrigerant supplied thereto.
Abstract:
The present invention relates to a liquid temperature controlling system and, more particularly, to a modular liquid temperature controlling system that is structured and/or configured to cool a volume of liquid stored in a container through direct contact with a portion of the system which utilizes at least one thermoelectric device.
Abstract:
A two-phase heat exchanger includes a hot side heat sink, a cold side heat sink, and one or more thermoelectric modules disposed between the hot side heat sink and the cold sink heat sink such that hot sides of the one or more thermoelectric modules are thermally coupled to the hot side heat sink and cold sides of the one or more thermoelectric modules are thermally coupled to the cold side heat sink. The two-phase heat exchanger is configured to be mounted at an angle from vertical.