摘要:
A semiconductor device 100 includes: a first silicon carbide layer 120 arranged on the principal surface of a semiconductor substrate 101; a first impurity region 103 of a first conductivity type arranged in the first silicon carbide layer; a body region 104 of a second conductivity type; a contact region 131 of the second conductivity type which is arranged at a position in the body region that is deeper than the first impurity region 103 and which contains an impurity of the second conductivity type at a higher concentration than the body region; a drift region 102 of the first conductivity type; and a first ohmic electrode 122 in ohmic contact with the first impurity region 103 and the contact region 131, wherein: a contact trench 121, which penetrates through the first impurity region 103, is provided in the first silicon carbide layer 120; and the first ohmic electrode 122 is arranged in the contact trench 121 and is in contact with the contact region 131 on at least a portion of a side wall lower portion 121cL and a bottom surface 121b of the contact trench.
摘要:
A semiconductor device 100 includes: a first silicon carbide layer 120 arranged on the principal surface of a semiconductor substrate 101; a first impurity region 103 of a first conductivity type arranged in the first silicon carbide layer; a body region 104 of a second conductivity type; a contact region 131 of the second conductivity type which is arranged at a position in the body region that is deeper than the first impurity region 103 and which contains an impurity of the second conductivity type at a higher concentration than the body region; a drift region 102 of the first conductivity type; and a first ohmic electrode 122 in ohmic contact with the first impurity region 103 and the contact region 131, wherein: a contact trench 121, which penetrates through the first impurity region 103, is provided in the first silicon carbide layer 120; and the first ohmic electrode 122 is arranged in the contact trench 121 and is in contact with the contact region 131 on at least a portion of a side wall lower portion 121cL and a bottom surface 121b of the contact trench.
摘要:
A semiconductor device according to the present invention includes a contact region 201 of a second conductivity type which is provided in a body region 104. The contact region 201 includes a first region 201a in contact with a first ohmic electrode 122 and a second region 201b located at a position deeper than that of the first region 201a and in contact with the body region 104. The first region 201a and the second region 201b each have at least one peak of impurity concentration. The peak of impurity concentration in the first region 201a has a higher value than that of the peak of impurity concentration in the second region 201b.
摘要:
This silicon carbide semiconductor element includes: a body region of a second conductivity type which is located on a drift layer of a first conductivity type; an impurity region of the first conductivity type which is located on the body region; a trench which runs through the body region and the impurity region to reach the drift layer; a gate insulating film which is arranged on surfaces of the trench; and a gate electrode which is arranged on the gate insulating film. The surfaces of the trench include a first side surface and a second side surface which is opposed to the first side surface. The concentration of a dopant of the second conductivity type is higher at least locally in a portion of the body region which is located beside the first side surface than in another portion of the body region which is located beside the second side surface.
摘要:
A semiconductor device according to the present invention includes a contact region 201 of a second conductivity type which is provided in a body region 104. The contact region 201 includes a first region 201a in contact with a first ohmic electrode 122 and a second region 201b located at a position deeper than that of the first region 201a and in contact with the body region 104. The first region 201a and the second region 201b each have at least one peak of impurity concentration. The peak of impurity concentration in the first region 201a has a higher value than that of the peak of impurity concentration in the second region 201b.
摘要:
This silicon carbide semiconductor element includes: a body region of a second conductivity type which is located on a drift layer of a first conductivity type; an impurity region of the first conductivity type which is located on the body region; a trench which runs through the body region and the impurity region to reach the drift layer; a gate insulating film which is arranged on surfaces of the trench; and a gate electrode which is arranged on the gate insulating film. The surfaces of the trench include a first side surface and a second side surface which is opposed to the first side surface. The concentration of a dopant of the second conductivity type is higher at least locally in a portion of the body region which is located beside the first side surface than in another portion of the body region which is located beside the second side surface.
摘要:
The semiconductor device includes: a substrate 2 and a drift layer 3a, which are made of a wide-bandgap semiconductor; a p-type well 4a and a first n-type doped region 5, which are defined in the drift layer; a source electrode 5, which is electrically connected to the first n-type doped region 5; a second n-type doped region 30 arranged between its own well 4a and an adjacent unit cell's well 4a; a gate insulating film 7b, which covers at least partially the first and second n-type doped regions and the well 4a; a gate electrode 8 arranged on the gate insulating film; and a third n-type doped region 31, which is arranged adjacent to the second n-type doped region so as to cover one of the vertices of the unit cell and which has a dopant concentration that is higher than the drift layer and lower than the second n-type doped region.
摘要:
The semiconductor device includes: a substrate 2 and a drift layer 3a, which are made of a wide-bandgap semiconductor; a p-type well 4a and a first n-type doped region 5, which are defined in the drift layer; a source electrode 5, which is electrically connected to the first n-type doped region 5; a second n-type doped region 30 arranged between its own well 4a and an adjacent unit cell's well 4a; a gate insulating film 7b, which covers at least partially the first and second n-type doped regions and the well 4a; a gate electrode 8 arranged on the gate insulating film; and a third n-type doped region 31, which is arranged adjacent to the second n-type doped region so as to cover one of the vertices of the unit cell and which has a dopant concentration that is higher than the drift layer and lower than the second n-type doped region.
摘要:
A semiconductor device (100) includes a substrate (1) having a semiconductor layer (102); a trench (12) in the semiconductor layer (102); a gate insulating film (11) covering a periphery and an inner surface of the trench (12); a gate electrode (8) including a portion filling the trench (12) and a portion around the trench (12), and provided on the gate insulating film (11); an interlayer insulating film (13) on the gate electrode (8); and a hollow (50) above and around the trench (12), and between the gate electrode (8) and the gate insulating film (11). Above the trench (12), the hollow (50) protrudes inside the trench (12) from a plane extending from an upper surface of the gate insulating film (11) at a portion covering the side surface of the trench (12) with a flat shape.
摘要:
A method of producing a silicon carbide semiconductor device, including: step (A) of forming an impurity-doped region by implanting impurity ions 3 into at least a portion of a silicon carbide layer 2 formed on a first principal face of a silicon carbide substrate 1 having first and second principal faces; step (B) of forming capping layers 6 having thermal resistance on at least an upper face 2a of the silicon carbide layer 2 and on at least a second principal face 12a of the silicon carbide substrate 1; and step (C) of performing an activation annealing treatment by heating the silicon carbide layer 2 at a predetermined temperature.