摘要:
Disclosed herein are various OPC methods as it relates to the formation of masks to be used in multiple patterning processes, such as double patterning processes, and to the use of such masks during the manufacture of semiconductor devices. One illustrative method disclosed herein includes the steps of decomposing an initial overall target pattern into at least a first sub-target pattern and a second sub-target pattern, wherein each of the first and second sub-target patterns comprise at least one feature, and performing a first optical proximity correction process on the first sub-target pattern, wherein a position of at least one feature of the second sub-target pattern in the initial overall target pattern is considered when performing the first optical proximity correction process.
摘要:
One illustrative method disclosed herein involves identifying an overall target pattern comprised of at least one hole-type feature, decomposing the overall target pattern into at least a first sub-target pattern and a second sub-target pattern, wherein the first sub-target pattern and the second sub-target pattern each comprise at least one common hole-type feature, generating a first set of mask data information corresponding to the first sub-target pattern, and generating a second set of mask data information corresponding to the second sub-target pattern.
摘要:
One illustrative method disclosed herein involves identifying an overall target pattern comprised of at least one hole-type feature, decomposing the overall target pattern into at least a first sub-target pattern and a second sub-target pattern, wherein the first sub-target pattern and the second sub-target pattern each comprise at least one common hole-type feature, generating a first set of mask data information corresponding to the first sub-target pattern, and generating a second set of mask data information corresponding to the second sub-target pattern.
摘要:
FIG. 1 is a front, top perspective view of a glider exercise device, showing my new design; FIG. 2 is a rear, bottom perspective view thereof; FIG. 3 is a front elevation view thereof; FIG. 4 is a rear elevation view thereof; FIG. 5 is a left side elevation view thereof; FIG. 6 is a right side elevation view thereof; FIG. 7 is a top plan view thereof; and, FIG. 8 is a bottom plan view thereof.
摘要:
Gate control of power semiconductor devices using reduced gate drivers is disclosed. A circuit breaker may include a multitude of transistors, such as insulated gate bipolar transistors (IGBTs), connected in series with one another. Each transistor may be connected to a respective gate resistor. Diodes may be connected between various gate resistors. One or more resistor-capacitor (RC) snubber circuits may be provided in parallel with one or more of the transistors. Likewise, one or more metal-oxide varistors (MOVs) may be connected in parallel to one or more of the transistors. A gate driver (e.g., a single gate drive) may be connected to the one or more diodes and an emitter of at least one of transistors.
摘要:
Methods and apparatuses for manufacturing are disclosed, including (a) providing an apparatus having: a laser; scanner; powder injection system; powder spreading system; dichroic filter; imager-and-processor; and computer; (b) programming the computer with specifications of a sample; (c) using the computer to set initial parameters based on the sample specifications; (d) adjusting a stage to position the sample; (e) focusing and scanning electromagnetic radiation onto the sample while powder is concurrently injected onto the sample in order to deposit a layer; (f) capturing two-dimensional images of the sample and probing the sample to determine whether the deposited layer was manufactured per the specifications; (g) use the computer to adjust the three-dimensional manufacturing parameters based on the determination made in step (f) prior to additively manufacturing a subsequent layer or making repairs; and (h) repeating steps (d), (e), (f), and (g) until the manufacture is complete. Other embodiments are described and claimed.
摘要:
A Metal Oxide Semiconductor (MOS) transistor comprising: a source; a gate; and a drain, the source, gate and drain being located in or on a well structure of a first doping polarity located in or on a substrate; wherein at least one of the source and the drain comprises a first structure comprising: a first region forming a first drift region, the first region being of a second doping polarity opposite the first doping polarity; a second region of the second doping polarity in or on the first region, the second region being a well region and having a doping concentration which is higher than the doping concentration of the first region; and a third region of the second doping polarity in or on the second region. Due to the presence of the second region the transistor may have a lower ON resistance when compared with a similar transistor which does not have the second region. The breakdown voltage may be influenced only to a small extent.
摘要:
A system and method for a secure weapon concealment compartment situated in a personal carrying item such as a purse, handbag, briefcase, backpack or luggage that allows a person to safely and efficiently carry, store and make available for use a weapon. The concealment compartment includes weapon securing having tapered holders or orifices formed to receive a weapon and provide safety against unintentional discharge of the weapon and resistive forces applied to a protective carrier of the weapon once stored to enable quick and effective withdrawal of the weapon from the concealment compartment.
摘要:
The present invention relates to RNA interference-based methods for inhibiting the expression of the DUX4 gene, a double homeobox gene on human chromosome 4q35. Recombinant adeno-associated viruses of the invention deliver DNAs encoding microRNAs that knock down the expression of DUX4. The methods have application in the treatment of muscular dystrophies such as facioscapulohumeral muscular dystrophy.
摘要:
A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.