摘要:
Interconnect structures having improved electromigration resistance are provided that include a metallic interfacial layer (or metal alloy layer) that is present at the bottom of a via opening. The via opening is located within a second dielectric material that is located atop a first dielectric material that includes a first conductive material embedded therein. The metallic interfacial layer (or metal alloy layer) that is present at the bottom of the via opening is located between the underlying first conductive material embedded within the first dielectric and the second conductive material that is embedded within the second dielectric material. Methods of fabricating the improved electromigration resistance interconnect structures are also provided.
摘要:
Interconnect structures having improved electromigration resistance are provided that include a metallic interfacial layer (or metal alloy layer) that is present at the bottom of a via opening. The via opening is located within a second dielectric material that is located atop a first dielectric material that includes a first conductive material embedded therein. The metallic interfacial layer (or metal alloy layer) that is present at the bottom of the via opening is located between the underlying first conductive material embedded within the first dielectric and the second conductive material that is embedded within the second dielectric material. Methods of fabricating the improved electromigration resistance interconnect structures are also provided.
摘要:
A gas cluster ion beam process is used to reduce and/or even eliminate metal void formation in an interconnect structure. In one embodiment, gas cluster ion beam etching forms a chamfer opening in an interconnect dielectric material. In another embodiment, gas cluster ion beam etching reduces the overhang profile of a diffusion barrier or a multilayered stack of a diffusion barrier and a plating seed layer that is formed within an opening located in an interconnect dielectric material. In yet another embodiment, a gas cluster ion beam process deactivates a surface of an interconnect dielectric material that is located at upper corners of an opening that is formed therein. In this embodiment, the gas cluster ion beam process deposits a material that deactivates the upper corners of each opening that is formed into an interconnect dielectric material.
摘要:
A contact structure and a method of forming the contact structure. The structure includes: a silicide layer on and in direct physical contact with a top substrate surface of a substrate; an electrically insulating layer on the substrate; and an aluminum plug within the insulating layer. The aluminum plug has a thickness not exceeding 25 nanometers in a direction perpendicular to the top substrate surface. The aluminum plug extends from a top surface of the silicide layer to a top surface of the insulating layer. The aluminum plug is in direct physical contact with the top surface of the silicide layer and is in direct physical contact with the silicide layer. The method includes: forming the silicide layer on and in direct physical contact with the top substrate surface of the substrate; forming the electrically insulating layer on the substrate; and forming the aluminum plug within the insulating layer.
摘要:
Methods and a structure. A method of forming contact structure includes depositing a silicide layer onto a substrate; depositing an electrically insulating layer over a first surface of the silicide layer; forming a via through the insulating layer extending to the first surface; depositing an electrically conductive layer covering a bottom and at least one vertical wall of the via; removing the conductive layer from the bottom; and filling the via with aluminum directly contacting the silicide layer. A structure includes: a silicide layer disposed on a substrate; an electrically insulating layer disposed over the silicide layer; an aluminum plug extending through the insulating layer and directly contacting the silicide layer; and an electrically conductive layer disposed between the plug and the insulating layer. Also included is a method where an aluminum layer grows selectively from a silicide layer and at least one sidewall of a trench.
摘要:
Disclosed are embodiments of an improved high aspect ratio electroplated metal structure (e.g., a copper or copper alloy interconnect, such as a back end of the line (BEOL) or middle of the line (MOL) contact) in which the electroplated metal fill material is free from seams and/or voids. Also, disclosed are embodiments of a method of forming such an electroplated metal structure by lining a high aspect ratio opening (e.g., a high aspect ratio via or trench) with a metal-plating seed layer and, then, forming a protective layer over the portion of the metal-plating seed layer adjacent to the opening sidewalls so that subsequent electroplating occurs only from the bottom surface of the opening up.
摘要:
Methods are provided for fabricating semiconductor IC (integrated circuit) chips having high-Q on-chip capacitors formed on the chip back-side and connected to integrated circuits on the chip front-side using through-wafer interconnects. In one aspect, a semiconductor device includes a semiconductor substrate having a front side, a back side, and a buried insulating layer interposed between the front and back sides of the substrate. An integrated circuit is formed on the front side of the semiconductor substrate, an integrated capacitor is formed on the back side of the semiconductor substrate, and an interconnection structure is formed through the buried insulating layer to connect the integrated capacitor to the integrated circuit.
摘要:
Methods and a structure. A method of forming contact structure includes depositing a silicide layer onto a substrate; depositing an electrically insulating layer over a first surface of the silicide layer; forming a via through the insulating layer extending to the first surface; depositing an electrically conductive layer covering a bottom and at least one vertical wall of the via; removing the conductive layer from the bottom; and filling the via with aluminum directly contacting the silicide layer. A structure includes: a silicide layer disposed on a substrate; an electrically insulating layer disposed over the silicide layer; an aluminum plug extending through the insulating layer and directly contacting the silicide layer; and an electrically conductive layer disposed between the plug and the insulating layer. Also included is a method where an aluminum layer grows selectively from a silicide layer and at least one sidewall of a trench.
摘要:
An electrically programmable fuse comprising a cathode member, an anode member, and a link member, wherein the cathode member, the anode member, and the link member each comprise one of a plurality of materials operative to localize induced electromigration in the programmable fuse.
摘要:
A method of forming a stochastically based integrated circuit encryption structure includes forming a lower conductive layer over a substrate, forming a short prevention layer over the lower conductive layer, forming an intermediate layer over the short prevention layer, wherein the intermediate layer is characterized by randomly structured nanopore features. An upper conductive layer is formed over the random nanopore structured intermediate layer. The upper conductive layer is patterned into an array of individual cells, wherein a measurable electrical parameter of the individual cells has a random distribution from cell to cell with respect to a reference value of the electrical parameter.