摘要:
A multi-light-emitting diode (LED) display for a USB flash drive produces a visually dazzling display. When accessed, a USB flash controller drives pulses onto an activity signal that increments a counter on a pattern-decoding generator. The pattern-decoding generator decodes the count and drives signals to data outputs. The data outputs connect to LED's, turning LED's on and off according to a display pattern. The pattern can be programmed by the USB flash controller into the pattern-decoding generator, or can be a hardwired pattern. Marquee patterns having a lit LED appearing to move down a line of LED's have more visual appeal than single LED indicators. Each data line can drive two LED's in different parts of a dual display, reducing costs. Multi-color LED's can be used to improve variety. The multiple LED's and the pattern-decoding generator can be mounted on a flexible PCB.
摘要:
A multi-light-emitting diode (LED) display for a USB flash drive produces a visually dazzling display. When accessed, a USB flash controller drives pulses onto an activity signal that increments a counter on a pattern-decoding generator. The pattern-decoding generator decodes the count and drives signals to data outputs. The data outputs connect to LED's, turning LED's on and off according to a display pattern. The pattern can be programmed by the USB flash controller into the pattern-decoding generator, or can be a hardwired pattern. Marquee patterns having a lit LED appearing to move down a line of LED's have more visual appeal than single LED indicators. Each data line can drive two LED's in different parts of a dual display, reducing costs. Multi-color LED's can be used to improve variety. The multiple LED's and the pattern-decoding generator can be mounted on a flexible PCB.
摘要:
A flash-card exchanger has two modes of operation. When a host personal computer (PC) is connected to a Universal-Serial-Bus (USB) connector, the flash-card exchanger operates in a card reader mode, allowing the host to read data from removable flash-memory cards inserted into connector slots of the flash-card exchanger. When the host PC is not connected, a USB flash-memory thumb or key-chain drive can be inserted into a second USB connector. A USB dual-mode microcontroller acts as a USB host, reading data from the removable flash-memory card and writing the data to the USB-memory key drive using USB packets. Since the USB-memory key drive is small and removable, the user can upgrade to larger storage capacities by plugging in a larger-capacity USB-memory key drive. A flash-exchanger program executing on the USB dual-mode microcontroller copies data from an input-output bus and generates USB packets to the USB-memory key drive.
摘要:
A flash-card exchanger has two modes of operation. When a host personal computer (PC) is connected to a Universal-Serial-Bus (USB) connector, the flash-card exchanger operates in a card reader mode, allowing the host to read data from removable flash-memory cards inserted into connector slots of the flash-card exchanger. When the host PC is not connected, a USB flash-memory thumb or key-chain drive can be inserted into a second USB connector. A USB dual-mode microcontroller acts as a USB host, reading data from the removable flash-memory card and writing the data to the USB-memory key drive using USB packets. Since the USB-memory key drive is small and removable, the user can upgrade to larger storage capacities by plugging in a larger-capacity USB-memory key drive. A flash-exchanger program executing on the USB dual-mode microcontroller copies data from an input-output bus and generates USB packets to the USB-memory key drive.
摘要:
An ExpressCard contains flash memory. The ExpressCard has an ExpressCard connector that plugs into a host, such as a personal computer, digital camera, or personal digital assistant (PDA). A controller chip on the ExpressCard uses a pair of differential Universal-Serial-Bus (USB) data lines in the connector to communicate with the USB host, or can use PCI Express, Firewire, or other protocols. One or more flash-memory chips on the ExpressCard are controlled by a flash-memory controller in the controller chip. Two or more channels of a flash bus have a shared control bus but separate ready lines. The separate ready lines allow flash-memory chips in the two channels to finish operations at different times.
摘要:
A multi media card (MMC) is disclosed. The MMC includes a flash controller and at least one flash memory device. The flash controller increases the throughput of the at least one flash memory device to match the speed of a host bus coupled to the MMC. The flash controller increases the throughput by performing one or more of performing a read-ahead memory read operation, performing a write-ahead memory write operation, increasing the size of a page register of the at least one flash memory device, increasing the width of a memory data bus, performing a dual-channel concurrent memory read operation, performing a dual-channel concurrent memory write operation, performing a write-cache memory write operation, and any combination thereof.
摘要:
A multi media card (MMC) is disclosed. The MMC includes a flash controller and at least one flash memory device. The flash controller increases the throughput of the at least one flash memory device to match the speed of a host bus coupled to the MMC. The flash controller increases the throughput by performing one or more of performing a read-ahead memory read operation, performing a write-ahead memory write operation, increasing the size of a page register of the at least one flash memory device, increasing the width of a memory data bus, performing a dual-channel concurrent memory read operation, performing a dual-channel concurrent memory write operation, performing a write-cache memory write operation, and any combination thereof.
摘要:
A flash-drive or flash-card reader connects to a personal computer (PC) through a serial link such as a Universal-Serial-Bus (USB), IEEE 1394, SATA, or IDE. A local CPU acts as the bus master of a CPU bus that connects to slave ports on a flash-memory controller, a serial engine, and a RAM buffer. A second bus in parallel to the CPU bus connects a second slave port on the RAM buffer to a master port on the flash-memory controller and to a master port on the serial engine. The flash-memory controller or the serial engine can use their master ports to transfer data to and from the RAM buffer using the second bus, allowing the CPU to retain control of the CPU bus. The second bus is a flash-serial buffer bus that improves data transfer rates. The flash-memory controller can prefetch into the RAM buffer.
摘要:
A flash-drive or flash-card reader connects to a personal computer (PC) through a serial link such as a Universal-Serial-Bus (USB), IEEE 1394, SATA, or IDE. A local CPU acts as the bus master of a CPU bus that connects to slave ports on a flash-memory controller, a serial engine, and a RAM buffer. A second bus in parallel to the CPU bus connects a second slave port on the RAM buffer to a master port on the flash-memory controller and to a master port on the serial engine. The flash-memory controller or the serial engine can use their master ports to transfer data to and from the RAM buffer using the second bus, allowing the CPU to retain control of the CPU bus. The second bus is a flash-serial buffer bus that improves data transfer rates. The flash-memory controller can prefetch into the RAM buffer.
摘要:
A FLASH controller is disclosed. The controller comprises a USB interface unit. The USB interface unit implements a USB standard that has a bus speed equal or greater than 12 Mb/s. The controller includes an internal bus coupled to the USB interface unit; and a FLASH interface unit coupled to the internal bus. The FLASH interface unit includes FLASH controller logic that allows the throughput for access to the FLASH memory to match the speed of the USB standard. Advantages of the FLASH controller in accordance with the present invention include (1) utilizing the higher speed USB interface such as the USB 2.0 standard, which substantially increases the serial throughput between USB host and FLASH controller; (2) utilizing more advanced FLASH control logic which is implemented to raise the throughput for the FLASH memory access; (3) utilizing an intelligent algorithm to detect and access the different FLASH types, which broadens the sourcing and the supply of FLASH memory; (4) by storing the software program along with data in FLASH memory which results in the cost of the controller being reduced, and also makes the software program field changeable and upgradeable; and (5) providing high integration, which substantially reduces the overall space needed and reduces the complexity and the cost of manufacturing.