摘要:
An electronic circuit includes at least one field effect transistor that is to be protected against electrostatic discharge events, and at least one protection field effect transistor. The protection field effect transistor has a crystal orientation that is different from a crystal orientation of the field effect transistor to be protected.
摘要:
An electronic circuit includes at least one field effect transistor that is to be protected against electrostatic discharge events, and at least one protection field effect transistor. The protection field effect transistor has a crystal orientation that is different from a crystal orientation of the field effect transistor to be protected.
摘要:
Various embodiments described below relate to an ESD protection device that includes a voltage controlled shunt (e.g., a transistor) to selectively shunt energy of an incoming ESD pulse away from a circuit that includes a semiconductor device to be protected. In some embodiments, the ESD protection device includes a power up detection element to determine whether the circuit has powered up. If the circuit is powered up, the power up detection element prevents inadvertent triggering of the ESD protection device.
摘要:
Some embodiments relate to an electrostatic discharge (ESD) protection device to protect a circuit from an ESD event. The ESD protection device includes first and second trigger elements. Upon detecting an ESD pulse, the first trigger element provides a first trigger signal having a first pulse length. The second trigger element, upon detecting the ESD pulse, provides a second trigger signal having a second pulse length. The second pulse length is different from the first pulse length. A primary shunt shunts power of the ESD pulse away from the ESD susceptible circuit based on the first trigger signal. A current control element selectively pumps current due to the ESD pulse into a substrate of the primary shunt based on the second trigger signal.
摘要:
A gate controlled fin resistance element for use as an electrostatic discharge (ESD) protection element in an electrical circuit has a fin structure having a first connection region, a second connection region and a channel region formed between the first and second connection regions. Furthermore, the fin resistance element has a gate region formed at least over a part of the surface of the channel region. The gate region is electrically coupled to a gate control device, which gate control device controls an electrical potential applied to the gate region in such a way that the gate controlled fin resistance element has a high electrical resistance during a first operating state of the electrical circuit and a lower electrical resistance during a second operating state, which is characterized by the occurrence of an ESD event.
摘要:
In a method for producing an electronic component, a first doped connection region and a second doped connection region are formed on or above a substrate; a body region is formed between the first doped connection region and the second doped connection region; at least two gate regions separate from one another are formed on or above the body region; at least one partial region of the body region is doped by means of introducing dopant atoms, wherein the dopant atoms are introduced into the at least one partial region of the body region through at least one intermediate region formed between the at least two separate gate regions.
摘要:
Some embodiments relate to an apparatus that exhibits vertical diode activity to occur between a semiconductive body and an epitaxial film that is disposed over a doping region of the semiconductive body. Some embodiments include an apparatus that causes both vertical and lateral diode activity. Some embodiments include a gated vertical diode for a finned semiconductor apparatus. Process embodiments include the formation of vertical-diode apparatus.
摘要:
An ESD protection element for use in an electrical circuit having a fin structure or a fully depleted silicon-on-insulator structure. The fin structure or the fully depleted silicon-on-insulator structure contains a first connection region having a first conductivity type; a second connection region having a second conductivity type, which is opposite to the first conductivity type; and also a plurality of body regions which are formed alongside one another and which are formed between the first connection region and the second connection region. The body regions alternately have the first conductivity type and the second conductivity type. The ESD protection element has at least one gate region formed on or above at least one of the plurality of body regions, and also at least one gate control device which is electrically coupled to the at least one gate region.
摘要:
Some embodiments relate to an electrostatic discharge (ESD) protection device. The ESD protection device includes a first electrical path extending between the first and second circuit nodes and including a trigger element. A second electrical path extends between the first and second circuit nodes. The second electrical path includes a shunt element. A switching element is configured to trigger current flow through the shunt element based on both a state of the trigger element and a state of the switching element.