摘要:
In a projection objective provided for imaging a pattern arranged in an object plane of the projection objective into an image plane of the projection objective with the aid of an immersion medium arranged between a last optical element of the projection objective in the light path and the image plane, the last optical element has a transparent substrate and a protective layer system that is fitted to the substrate, is provided for contact with the immersion medium and serves for increasing the resistance of the last optical element to degradation caused by the immersion medium.
摘要:
In a projection objective provided for imaging a pattern arranged in an object plane of the projection objective into an image plane of the projection objective with the aid of an immersion medium arranged between a last optical element of the projection objective in the light path and the image plane, the last optical element has a transparent substrate and a protective layer system that is fitted to the substrate, is provided for contact with the immersion medium and serves for increasing the resistance of the last optical element to degradation caused by the immersion medium.
摘要:
Objective, in particular a projection objective for a microlithography projection-exposure installation, with at least one fluoride crystal lens. A reduction in the detrimental influence of birefringence is achieved if this lens is a (100)-lens with a lens axis which is approximately perpendicular to the {100} crystallographic planes or to the crystallographic planes equivalent thereto of the fluoride crystal. In the case of objectives with at least two fluoride crystal lenses, it is favorable if the fluoride crystal lenses are arranged such that they are rotated with respect to one another. The lens axes of the fluoride crystal lenses may in this case point not only in the crystallographic direction but also in the crystallographic direction or in the crystallographic direction. A further reduction in the detrimental influence of birefringence is achieved by the simultaneous use of groups with (100)-lenses rotated with respect to one another and groups with (111)-lenses or (110)-lenses rotated with respect to one another. A further reduction in the detrimental influence of birefringence is obtained by covering an optical element with a compensation coating.
摘要:
An objective, in particular a projection objective for a microlithography projection-exposure installation, with at least one fluoride crystal lens is disclosed. A reduction in the detrimental influence of birefringence is achieved if this lens is a (100)-lens with a lens axis which is approximately perpendicular to the {100} crystallographic planes or to the crystallographic planes equivalent thereto of the fluoride crystal. A further reduction in the detrimental influence of birefringence is obtained by covering an optical element with a compensation coating.
摘要:
An optical element (1a, 1b) for reflecting UV radiation at an operating wavelength below 250 nm, preferably at 193 nm, which has a substrate (2a, 2b), a reflective layer (3a, 3b) made of aluminum superimposed on the substrate (2a, 2b). The reflective aluminum layer (3a, 3b) is not transparent to UV radiation and is (111)-plane oriented. The reflective optical element (1a, 1b) has a reflectivity of more than 85%, preferably of more than 88%, and even more preferably of more than 92%, in a range of incident angles of at least 10°, preferably of at least 15°, at the operating wavelength. Also disclosed is an optical element having a reflective layer made from a material having a melting point higher than that of aluminum, as well as methods for producing such optical elements, and optical arrangements incorporating such optical elements.
摘要:
Objective, in particular a projection objective for a microlithography projection-exposure installation, with at least one fluoride crystal lens. A reduction in the detrimental influence of birefringence is achieved if this lens is a (100)-lens with a lens axis which is approximately perpendicular to the {100} crystallographic planes or to the crystallographic planes equivalent thereto of the fluoride crystal. In the case of objectives with at least two fluoride crystal lenses, it is favorable if the fluoride crystal lenses are arranged such that they are rotated with respect to one another. The lens axes of the fluoride crystal lenses may in this case point not only in the crystallographic direction but also in the crystallographic direction or in the crystallographic direction. A further reduction in the detrimental influence of birefringence is achieved by the simultaneous use of groups with (100)-lenses rotated with respect to one another and groups with (111)-lenses or (110)-lenses rotated with respect to one another. A further reduction in the detrimental influence of birefringence is obtained by covering an optical element with a compensation coating.
摘要:
An optical element (1a, 1b) for reflecting UV radiation at an operating wavelength below 250 nm, preferably at 193 nm, which has a substrate (2a, 2b), a reflective layer (3a, 3b) made of aluminum superimposed on the substrate (2a, 2b). The reflective aluminum layer (3a, 3b) is not transparent to UV radiation and is (111)-plane oriented. The reflective optical element (1a, 1b) has a reflectivity of more than 85%, preferably of more than 88%, and even more preferably of more than 92%, in a range of incident angles of at least 10°, preferably of at least 15°, at the operating wavelength. Also disclosed is an optical element having a reflective layer made from a material having a melting point higher than that of aluminum, as well as methods for producing such optical elements, and optical arrangements incorporating such optical elements.
摘要:
An optical element (14) transparent for radiation with a wavelength λ in the ultraviolet wavelength range below 250 nm, in particular at 193 nm, comprises a substrate (17) with a refractive index nS larger than 1.6, and an antireflection coating (16) formed on at least part of the surface of the substrate (17) between the substrate (17) and an ambient medium with a refractive index nA, preferably with nA=1.0. The antireflection coating (16) consists of a single layer of a material with a refractive index nL of about nL=√{square root over (nAnS)}, in particular nL>1.3, and the optical thickness dL of the single layer is about λ/4. The optical element (14) is preferably part of a projection objective (5) in a microlithography projection exposure apparatus (1) and located adjacent to a light-sensitive substrate (10).
摘要:
An optical element (14) transparent for radiation with a wavelength λ in the ultraviolet wavelength range below 250 nm, in particular at 193 nm, comprises a substrate (17) with a refractive index nS larger than 1.6, and an antireflection coating (16) formed on at least part of the surface of the substrate (17) between the substrate (17) and an ambient medium with a refractive index nA, preferably with nA=1.0. The antireflection coating (16) consists of a single layer of a material with a refractive index nL of about nL=√{square root over (nAnS)}, in particular nL>1.3, and the optical thickness dL of the single layer is about λ/4. The optical element (14) is preferably part of a projection objective (5) in a microlithography projection exposure apparatus (1) and located adjacent to a light-sensitive substrate (10).
摘要翻译:在紫外线波长范围在250nm以下,特别是193nm的波长为λ的辐射透明的光学元件(14)包括具有大于1.6的折射率n S S的衬底(17) ,以及形成在基板(17)的表面的至少部分之间的抗反射涂层(16),所述基板(17)和折射率为n A的环境介质之间,优选为n < SUB> A SUB> = 1.0。 抗反射涂层(16)由单层材料构成,折射率为nLL的材料的平均根数超过(n A 特别是nL SUB> 1.3,单层的光学厚度d L L大约是λ / 4。 光学元件(14)优选在微光刻投影曝光装置(1)中的投影物镜(5)的一部分,并且位于与感光基板(10)相邻的位置。
摘要:
An optical element (14) transparent for radiation with a wavelength λ in the ultraviolet wavelength range below 250 nm, in particular at 193 nm, comprises a substrate (17) with a refractive index ns larger than 1.6, and an antireflection coating (16) formed on at least part of the surface of the substrate (17) between the substrate (17) and an ambient medium with a refractive index nA, preferably with nA=1.0. The antireflection coating (16) consists of a single layer of a material with a refractive index nL of about nL=√{square root over (nAnS)}, in particular nL>1.3, and the optical thickness dL of the single layer is about λ/4. The optical element (14) is preferably part of a projection objective (5) in a microlithography projection exposure apparatus (1) and located adjacent to a light-sensitive substrate (10).