Abstract:
Array substrates for use in TFT-LCDs and fabrication methods thereof. A transparent conductive layer, a first metal layer, a first insulating layer, a semiconductor layer, a second insulating layer and a sacrificial layer are sequentially formed on a substrate. With a first photomask, a photoresist layer with various thicknesses is formed on part of the sacrificial layer. Using the photoresist layer as an etching mask, a gate line having a gate, a channel layer on the gate, a gate pad at the end portion of the gate line, a pixel electrode and a source pad are defined. An insulating spacer is formed on the sidewalls of the gate and gate line. With a second photomask, a source line, source and drain are formed. The source pad connects the end portion of the source line. An array substrate is thus obtained with only two photomasks.
Abstract:
Array substrates for use in TFT-LCDs and fabrication methods thereof. A transparent conductive layer, a first metal layer, a first insulating layer, a semiconductor layer, a second insulating layer and a sacrificial layer are sequentially formed on a substrate. With a first photomask, a photoresist layer with various thicknesses is formed on part of the sacrificial layer. Using the photoresist layer as an etching mask, a gate line having a gate, a channel layer on the gate, a gate pad at the end portion of the gate line, a pixel electrode and a source pad are defined. An insulating spacer is formed on the sidewalls of the gate and gate line. With a second photomask, a source line, source and drain are formed. The source pad connects the end portion of the source line. An array substrate is thus obtained with only two photomasks.
Abstract:
The invention utilizes a carbon nano material to nanotize a magnesium-based hydrogen storage material, thereby forming single or multiple crystals to enhance the surface to volume ratio and hydrogen diffusion channel of the magnesium-based hydrogen storage material. Therefore, the hydrogen storage material has higher hydrogen storage capability, higher absorption/desorption rate, and lower absorption/desorption temperature.
Abstract:
Array substrates for use in TFT-LCDs and fabrication methods thereof. A transparent conductive layer, a first metal layer, a first insulating layer, a semiconductor layer, a second insulating layer and a sacrificial layer are sequentially formed on a substrate. With a first photomask, a photoresist layer with various thicknesses is formed on part of the sacrificial layer. Using the photoresist layer as an etching mask, a gate line having a gate, a channel layer on the gate, a gate pad at the end portion of the gate line, a pixel electrode and a source pad are defined. An insulating spacer is formed on the sidewalls of the gate and gate line. With a second photomask, a source line, source and drain are formed. The source pad connects the end portion of the source line. An array substrate is thus obtained with only two photomasks.
Abstract:
A method for manufacturing a photomask of cylindrical capacitor arrays surrounded by a corrugated protection trench is provided. First, a capacitor array layout is generated, next, the capacitor array patterns are copied to protection trench area with exact the same shape and pitch, finally, the protection trench is finished by filling connecting patterns between gaps of the capacitor arrays. A corrugated close loop protection trench pattern can hence be developed upon photoresist through the exposing and is developing of a photo stepper.
Abstract:
Disclosed is a method of forming a hydrogen storage composite, including uniformly covering catalyst particles on the surface of a support to form a hybrid catalyst, and embedding the hybrid catalyst on the surface of a hydrogen storage material to form a hydrogen storage composite. Furthermore, the disclosed also provides a method for manufacturing the same.
Abstract:
Disclosed is a method of forming a hydrogen storage composite, including uniformly covering catalyst particles on the surface of a support to form a hybrid catalyst, and embedding the hybrid catalyst on the surface of a hydrogen storage material to form a hydrogen storage composite. Furthermore, the disclosed also provides a method for manufacturing the same.
Abstract:
The invention utilizes a carbon nano material to nanotize a magnesium-based hydrogen storage material, thereby forming single or multiple crystals to enhance the surface to volume ratio and hydrogen diffusion channel of the magnesium-based hydrogen storage material. Therefore, the hydrogen storage material has higher hydrogen storage capability, higher absorption/desorption rate, and lower absorption/desorption temperature.
Abstract:
A rapid-mounting security monitoring and controlling system is disclosed. Co-axial cable is used to transmit power supply, images, sound, and to control detected signals so as to rapidly installation of wirings for the security monitoring and controlling system. The complexity of wiring installation is improved and the installation cost and the material cost are greatly reduced.
Abstract:
The present invention relates to a process of making YAG fluorescence powder which comprises steps of: (a) providing a first solution of anions and a second solution of cations; (b) mixing the first solution of anions and the second solution of cations drop by drop and forming a precipitate; (c) collecting the precipitate and drying it; (d) annealing the precipitate under a pre-determined temperature until powder occurs; (e) sintering the annealed powder with a plasma torch for at least once; and (f) collecting the sintered powder.