摘要:
The present invention relates to rechargeable nickel metal hydride batteries and methods for making the same. More particularly, the present invention relates to rechargeable nickel metal hydride batteries having a precharge in the negative electrode sufficient for oxidation prevention in the negative electrode. The present invention discloses a nickel metal hydride battery, wherein the precharge of the negative electrode may be supplied by a variety of sources. The positive active material of the positive electrode may have positive active particles, such as nickel hydroxide, having a precursor coating that incorporates cobalt material capable of forming a conductive network. Sources other than cobalt-containing materials in the positive electrode include hydrogen gas provided directly to the negative active material, nickel aluminum mixed with the negative active material, the etching of the negative active material with an alkaline solution and borohydride chemically charging the negative active material. Preferably, a majority of the precharge of the negative electrode is supplied by sources other than cobalt-containing materials in the positive electrode.
摘要:
A nickel hydroxide material for use as an active material in positive electrodes for electrochemical cells. The nickel hydroxide material includes one or more modifiers which provide for a small crystallite size and high capacity without adversely affecting performance of the nickel hydroxide material.
摘要:
A preferred embodiment of the present invention provides a process for making nickel sulfate by converting nickel metal into nickel sulfate, which may be converted to nickel hydroxide. Nickel metal is dissolved in sulfuric acid and oxygen containing gas is introduced to produce a nickel sulfate solution having nickel sulfate and water as illustrated in the following chemical equation. Ni+H2SO4+½O2→NiSO4+H2O The nickel sulfate is filtered and sulfuric acid is continually added to maintain stoichiometry within a reactor until the nickel metal is dissolved. The sulfuric acid, oxygen containing gas and nickel metal may be heated to facilitate the desired reaction. Then, the nickel sulfate may be utilized to produce nickel hydroxide.
摘要翻译:本发明的优选实施方案提供了一种通过将镍金属转化成硫酸镍制备硫酸镍的方法,其可以转化为氢氧化镍。 将镍金属溶解在硫酸中,并引入含氧气体以产生具有硫酸镍和水的硫酸镍溶液,如以下化学方程所示。 <?in-line-formula description =“In-line Formulas”end =“lead”?> Ni + H 2 SO 2 4 + 1/2 O 2 < 硫酸镍(H 2 O 3)2 H 2 O 2&lt;&lt;直线公式描述=“内联式”末端=“尾”→硫酸镍 过滤并持续加入硫酸以在反应器内保持化学计量,直到镍金属溶解。 可以加热硫酸,含氧气体和镍金属以促进所需的反应。 然后,可以使用硫酸镍制造氢氧化镍。
摘要:
A method for making a catalyst having catalytically active material supported on a carrier matrix. The catalytically active material may be a mixed-valence, nanoclustered oxide(s), an organometallic material or a combination thereof. In one method, a metal salt solution is combined with a metal complexing agent to form a metal complex. The metal complex is then combined with a suspension that includes a carrier matrix and the system is subjected to ultrasonic agitation. A base is then added to induce a controlled crystallization of a catalytic nanocluster metal material onto the carrier matrix. The supported catalytic material is particularly useful for catalyzing oxygen reduction in a fuel cell, such as an alkaline fuel cell.
摘要:
A method for converting nickel into a nickel salt solution. Nickel is dissolved and reacted in an oxygen-enriched acidic solution to produce a nickel salt solution as illustrated in the following chemical equation, wherein X is a conjugate base: Ni+H2X+½O2->NiX+H2O.
摘要:
A hydrogen storage battery with improved cycle life and a method for making the same. The battery has a negative electrode with an electrochemically active negative material and a negative electrode capacity and a positive electrode electrochemically coupled with the negative electrode, the positive electrode having a positive electrode capacity and an electrochemically active positive material with a precharge. Also described herein is a positive electrode material for a hydrogen storage battery and a method for making the same. The positive electrode material includes a preoxidized positive active material which is partially non-oxidized. The preoxidized positive material may be used to provide precharge to the positive electrode of a hydrogen storage battery to aid in cell balancing.
摘要:
A reversible hydrogen storage alloy for electrochemical and thermal hydrogen storage having excellent kinetics and improved performance at low temperatures and excellent cycle life. The compositions of the hydrogen storage alloy is modified to achieve excellent performance at low temperatures and excellent cycle life via non-stoichiometric hydrogen storage alloy compositions.
摘要:
A method of activating a hydrogen storage alloy. The method includes the step of contacting the hydrogen storage alloy with an aqueous solution of an alkali metal hydroxide where the concentration of the alkali metal hydroxide is at least about 42 weight percent. The method produces a hydrogen storage alloy with increased surface area.
摘要:
A resealable, ventable hydrogen impermeable cover assembly for sealing a rechargeable, metal hydride hydrogen storage alloy electrochemical cell. The cover assembly includes, inter alia, a multilayered vent septum comprising at least one layer of a substantially hydrogen impermeable, highly compressible material and at least one layer of a high durometer hardness material exhibiting low pressure hysteresis.
摘要:
A hydrogen storage alloy having an atomically engineered microstructure that both physically and chemically absorbs hydrogen. The atomically engineered microstructure has a predominant volume of a first microstructure which provides for chemically absorbed hydrogen and a volume of a second microstructure which provides for physically absorbed hydrogen. The volume of the second microstructure may be at least 5 volume % of atomically engineered microstructure. The atomically engineered microstructure may include porous micro-tubes in which the porosity of the micro-tubes physically absorbs hydrogen. The micro-tubes may be at least 5 volume % of the atomically engineered microstructure. The micro-tubes may provide proton conduction channels within the bulk of the hydrogen storage alloy and the proton conduction channels may be at least 5 volume % of the atomically engineered microstructure.