Abstract:
A rotating electrical machine has a rotor having a field winding and a stator having an armature winding. A control device adjusts a field current flowing in the field winding and an armature current flowing in the armature winding. The armature current flowing in the armature winding is expressed by using a current vector having a d-axis current and a q-axis current in a d-q coordinate system. In a case in which the control device increases the d-axis current to generate a magnetic flux in a direction which is opposite to a direction to generate a magnetic flux by a field current, the control device gradually reduces the d-axis current during a predetermined period of time after increasing the d-axis current in the direction opposite to the direction to generate the magnetic flux by the field current.
Abstract:
In an apparatus for controlling a rotary electric machine, a voltage applier applies a high-frequency voltage to one of the field winding and the armature winding. One of a field winding and an armature winding is defined as an input winding, and the other thereof is defined as an output winding. A current detector detects a high-frequency current flowing through the output winding based on the applied high-frequency voltage. The high-frequency current includes therein information associated with the rotational position of a target magnetic pole of the rotor as a predetermined one of the magnetic poles. An estimator estimates the rotational position of the target magnetic pole of the rotor according to the high-frequency current detected by the current detector.
Abstract:
In a control apparatus for a rotary electric machine, a first manipulation unit manipulates, as control for a predetermined first region with respect to the controlled variable, a voltage phase of a voltage vector applied to an armature winding while controlling a field current to cause a deviation between an amplitude of an induced voltage and an amplitude of a predetermined voltage to be equal to or smaller than a predetermined value, the induced voltage being generated in the armature winding based on rotation of the rotor, the predetermined voltage being applied to the armature winding; A second manipulation unit that manipulates, as control for a second region that is larger than the first region, the field current such that the controlled variable is controlled to the target value.
Abstract:
A rotation angle estimation apparatus includes: a high-frequency voltage setting unit that sets high-frequency voltages; a circuit operating unit that operates an electric power conversion circuit to apply each of the high-frequency voltages to a corresponding one of winding groups of a rotating electric machine; and a rotation angle estimating unit that estimates a rotation angle of the rotating electric machine based on at least one of high-frequency currents that flow in the winding groups upon application of the high-frequency voltages to the winding groups. Moreover, the high-frequency voltage setting unit sets the high-frequency voltages based on the spatial phase difference between the winding groups so that in a fixed coordinate system of the rotating electric machine, the magnitude of a resultant vector of a plurality of high-frequency voltage vectors, which are respectively applied to the winding groups, becomes smaller than the magnitude of each of the high-frequency voltage vectors.
Abstract:
A rotating electric machine is applied to a multilayer winding-type rotating electric machine including a stator and a rotor. The stator includes an armature winding. The rotor includes at least one of a field winding and a permanent magnet for generating a magnetic field that have characteristics of magnetic flux of a non-sinusoidal waveform in relation to a rotation angle of the rotor. The armature winding has winding groups. Each of the winding groups has coils that are connected to an actual neutral point provided for each winding group, and has a first winding group and a second winding group that have a phase difference. A control apparatus detects a rotation angle based on a voltage at the actual neutral point of the first winding group and a voltage at the actual neutral point of the second winding group, and controls the rotating electric machine based on the rotation angle.
Abstract:
In a system, a triangular carrier wave is compared in magnitude with first and second two-phase modulated command signals. Based on a result of the comparison, on-off operations of the high- and low-side switching elements of two phases of a three-phase inverter corresponding to the first and second two-phase modulated command signals are performed while the high- and low-side switching elements of the remaining phase of the three-phase inverter is fixed to be on or off. A value of a current flowing through a first or second bus connected between a DC power source and the three-phase inverter is measured when a local peak of the triangular carrier signal occurs while none of the high-side switching elements of all the three-phases are on or none of the low-side switching elements of all the three-phases are on.
Abstract:
A rotor position judging unit detects a rotor position by utilizing induced voltages generated at respective phases of an armature winding. While a field current flowing through a field winding rises toward a target value (while the field current temporally changes), induced voltages are generated at the respective phases of the armature winding by temporal differentiation of a magnetic flux which interlinks with the armature winding. The rotor position judging unit detects the rotor position (d-axis of a rotor) on a basis of a table containing combination of amplitude ratios and polarities of the induced voltages generated at the respective phases.
Abstract:
There is provided a control unit (40) applied to a motor (10) that includes a rotor (12) having a field winding (11) and a rotor (13) having armature winding groups (10a, 10b) to control a field current passed through the field winding. Each of the armature winding groups is applied with a prescribed voltage. The field current is controlled so as to be a minimum field current value If_min with which a deviation between an amplitude of an induced voltage generated in the armature winding groups by rotation of the rotor, and an amplitude of the voltage applied to the armature winding groups becomes equal to or smaller than a prescribed value.
Abstract:
In a control apparatus of a rotating device, a voltage command value setting section sets terminal command values on the basis of a command value of a control amount of the rotating device. Individual correcting sections calculate feedback operation amounts on the basis of history information of electric currents flowing in respective terminals of the rotating device and corrects the terminal voltage command values with the feedback operation amounts. A prohibiting section prohibits difference corresponding amounts, which correspond to differences of the feedback operation amounts and an average of the feedback operation amounts, from being reflected in correcting the terminal voltage command values with maintaining polarities when a determining section determines that it is a switching time from one of a power-running control and a regeneration control to the other.
Abstract:
In a system for controlling a controlled variable of a rotary machine having plural-phase input terminals of the rotary machine in which plural-phase AC power is applied from an AC power applying module to the input terminals, a command-voltage setting module sets, based on a request value for the controlled variable, plural-phase AC command voltages for the plural-phase AC power as a feedforward manipulated variable. A current obtaining module obtains plural-phase AC currents flowing in the respective plural-phase input terminals of the rotary machine. An amplitude correcting module corrects the amplitude of at least one of the plural-phase AC command voltages based on the magnitudes of the plural-phase AC currents.