Abstract:
A driving mode switching device includes a determination section, a notification section, a detection section, and a control section. The determination section is configured to determine whether a state has occurred in which automatic driving needs to be terminated. The notification section is configured to notify a driver of the instruction for performing a switching operation as a predetermined operation of a vehicle in the case of determining, by the determination section, that the state has occurred in which the automatic driving needs to be terminated. The detection section is configured to detect the switching operation. The control section is configured to switch travelling from automatic driving to manual driving in the case of detecting the switching operation by the detection section.
Abstract:
A portable device is applied to a vehicle having an automatic parking function of allowing the vehicle to run and park automatically in a predetermined position in a state where a user is out of the vehicle. The portable device includes a forward button member which is operated by the user when moving the vehicle forward, and a backward button member which is operated by the user when moving the vehicle backward. The portable device further includes a signal output unit having a function of outputting an automatic parking instruction signal for setting the vehicle in an automatic parking mode by touch-operating both the forward and backward button members. In this configuration, the forward button member has a forward arrow light emitting portion, and the backward button member has a backward arrow light emitting portion.
Abstract:
A collision avoidance apparatus includes a control unit that is configured to perform a collision avoidance process. The control unit determines whether or not an object is present ahead of the own vehicle. When the control unit determines that an object ahead is present, the control unit determines whether or not there is a likelihood of a collision between the object ahead and the own vehicle and whether or not a corner is present ahead of the own vehicle. When the control unit determines that a corner is not present and when a predetermined collision avoidance condition is established, the control unit is capable of changing a travelling direction of the own vehicle to avoid collision between the object ahead and the own vehicle. When the control unit determines that a corner is present, the control unit does not perform a travelling direction change of the own vehicle.
Abstract:
A parking lot identification system includes a control apparatus mounted to each of a plurality of vehicles and a central apparatus that communicates with the control apparatus of each of the plurality of vehicles. In the control apparatus of each of the plurality of vehicles, a parking determination unit is configured to determine whether a parking action of the vehicle is recognized, a parking-related data acquisition unit is configured to, in response to the parking action of the vehicle being recognized, acquire parking-related data including data of a location and an orientation of the vehicle during the parking action, and a parking-related data transmission unit is configured to transmit the parking-related data to the central apparatus. The central apparatus is configured to identify a parking lot area based on the parking-related data transmitted from the plurality of vehicles.
Abstract:
A rotating electric machine driving apparatus includes a controller section that obtains an electric current detection value and generates instruction signals for switching ON and OFF of switching elements based on the electric current detection value. The rotating electric machine driving apparatus also includes an IC that is provided with a signal amplifier for outputting amplified signals, which are amplified instruction signals output from the controller section. When an abnormal state, in which one of an instruction signal and an amplified signal amplifying the instruction signal is an ON instruction and the other one of the instruction signal and the amplified signal is an OFF instruction, continues for at least an abnormality determination time, an abnormality detector determines an abnormality of the amplified signal, which realizes an appropriate detection of an abnormality of the amplified signal.
Abstract:
A driving assistance device includes a travel information acquisition unit, a first information acquisition unit, a second information acquisition unit, a first determination unit, a second determination unit, a first avoidance-amount setting unit, a second avoidance-amount setting unit, and a driving control unit. The second avoidance-amount setting unit sets, when the second avoidance-amount setting unit sets a control amount of a driving control as a second avoidance amount for performing a second avoidance driving action, the control amount smaller than a control amount that is set as a first avoidance amount by the first avoidance-amount setting unit, and sets, when the second avoidance-amount setting unit sets a start timing of the driving control as the second avoidance amount for performing the second avoidance driving action, the start timing later than a start timing that is set as the first avoidance amount by the first avoidance-amount setting unit.
Abstract:
The likelihood of a collision of a vehicle colliding with an object in front of an own vehicle is determined, and an emergency braking control for avoiding a collision with the object is started in accordance with the determination results. A determination is made as to whether travel environment conditions have been established, from the location at which the vehicle is currently travelling, the situation behind the vehicle, and, the travel state of the vehicle, and the braking control is released when the likelihood of a collision dropped to a predetermined safety level during the period from the start of the emergency braking control until the own vehicle stops, and when the travel environment conditions have been established.
Abstract:
A traveling assistance apparatus recognizes a travel road on which a vehicle is traveling, acquires a traveling state of the vehicle, and determines whether or not the vehicle will deviate from the travel road based on the recognition result of the travel road and the traveling state of the vehicle. The apparatus determines whether to perform, as a prevention method for preventing from the travel road, a method in which either of steering control and brake control of the vehicle is performed, or a method in which a period over which either of the steering control and the brake control is performed and a period over which both of the steering control and the brake control are performed are set. The apparatus sets a steering amount for the steering control and a brake amount for the brake control when the deviation prevention control is performed based on the prevention method.
Abstract:
A rotating electric machine driver apparatus and an electric power steering apparatus using the same includes a controller section that obtains a detected current value and generates a high-side instruction signal and a low-side instruction signal to switch an upper arm element and a lower arm element based on the detected current value. An abnormality detector determines a simul-OFF abnormality which is an abnormality of a pair made up of the high-side and low-side instruction signals being simultaneously switched off based on a condition that switching off of the high-side instruction signal for the upper arm element and the low-side instruction signal for the lower arm element pair continues for at least a simul-OFF abnormality determination time. In such manner, the simul-OFF abnormality of the instruction signals is detected.
Abstract:
When a failure detection part detects a failure in an inverter circuit in a first power supply system, a drive control part stops the inverter circuit from driving a motor. An on/off control part turns off a first power supply relay of a power supply on/off part. Under a state that the inverter circuit stops a motor driving operation, a first coil set of the motor generates an induced voltage by rotation caused by an external force. The induced voltage is regenerated to a battery from the inverter circuit through a second power supply relay and a parasitic diode of the first power supply relay. Thus, circuit elements in the power supply system, which is failing, are protected from breaking down.