摘要:
An electrolytic device for the generation of hypohalous acid in aqueous solutions includes at least a single liquid chamber for receiving an aqueous solution containing halide ions therein, the single liquid chamber having an exterior wall and a solid anode contained within to provide for the oxidation of the halide ions, which, in turn, provides for the formation of hypohalous acid in aqueous solution, and a gas permeable cathode forming a portion of the exterior wall of the single liquid chamber, the cathode providing for the reduction of oxygen to provide hydroxyl ions in solution within the single liquid chamber to mix with the products generated at the anode. An embodiment of the electrolytic device including an anolyte chamber and a catholyte chamber separated by an ionomeric membrane is also described, whereby the anolyte chamber further includes an outlet including a pH control for determining and regulating the pH of the exiting anolyte effluent to between about 4 and 9. The product is suitable for disinfectant applications including as a hand sanitizer.
摘要:
An electrolytic device for the generation of hypohalous acid in aqueous solutions includes at least a single liquid chamber for receiving an aqueous solution containing halide ions therein, the single liquid chamber having an exterior wall and a solid anode contained within to provide for the oxidation of the halide ions, which, in turn, provides for the formation of hypohalous acid in aqueous solution, and a gas permeable cathode forming a portion of the exterior wall of the single liquid chamber, the cathode providing for the reduction of oxygen to provide hydroxyl ions in solution within the single liquid chamber to mix with the products generated at the anode. An embodiment of the electrolytic device including an anolyte chamber and a catholyte chamber separated by an ionomeric membrane is also described, whereby the anolyte chamber further includes an outlet including a pH control for determining and regulating the pH of the exiting anolyte effluent to between about 4 and 9. The product is suitable for disinfectant applications including as a hand sanitizer.
摘要:
An apparatus for forming a vacuum in a sealed enclosure through an electrochemical reaction includes an electrochemical cell comprising a cathode and an anode supported on a solid electrolyte. The solid electrolyte is a Li-ion non-volatile electrolyte containing a dissolved metal salt. The cathode is constructed of a material with which lithium is known to form alloys. The anode is constructed of a lithium-ion containing material. The cell is operable to expose lithium metal on the cathode.
摘要:
An apparatus for forming a vacuum in a sealed enclosure through an electrochemical reaction includes an electrochemical cell comprising a cathode and an anode supported on a solid electrolyte. The solid electrolyte is a Li-ion non-volatile electrolyte containing a dissolved metal salt. The cathode is constructed of a material with which lithium is known to form alloys. The anode is constructed of a lithium-ion containing material. The cell is operable to expose lithium metal on the cathode.
摘要:
A portable, self-contained device is described for the topical application of oxygen to promote the healing of skin wounds. The device is comprised of a wound dressing that incorporates an electrochemical, chemical, or thermal means of generating high purity oxygen. The device can regulate the supply of oxygen to an area above the wound at various concentrations, pressures and dosages. The device is driven by a built in or accessory power source. Ambient air is brought into contact with a gas permeable cathode. Oxygen present in the air is reduced at the cathode to negative ions (i.e. peroxide, superoxide or hydroxyl ions) and/or their unprotonated and protonated neutral species. One or more of these species diffuse through an electrolyte and are then oxidized at a gas permeable anode to produce a high concentration of oxygen directly above the wound. Oxygen can also be depleted from that same area by reversing the polarity of the power source allowing the supply of oxygen to the wound to be modulated, thereby controlling the rate of healing.
摘要:
A portable, self-contained device is described for the topical application of oxygen to promote the healing of skin wounds. The device is comprised of a wound dressing that incorporates an electrochemical, chemical, or thermal means of generating high purity oxygen. The device can regulate the supply of oxygen to an area above the wound at various concentrations, pressures and dosages. The device is driven by a built in or accessory power source. Ambient air is brought into contact with a gas permeable cathode. Oxygen present in the air is reduced at the cathode to negative ions (i.e. peroxide, superoxide or hydroxyl ions) and/or their unprotonated and protonated neutral species. One or more of these species diffuse through an electrolyte and are then oxidized at a gas permeable anode to produce a high concentration of oxygen directly above the wound. Oxygen can also be depleted from that same area by reversing the polarity of the power source allowing the supply of oxygen to the wound to be modulated, thereby controlling the rate of healing.
摘要:
A portable topical oxygen therapy system includes a miniature gas cylinder containing compressed oxygen, a miniature regulator or having an inlet and an outlet and a wound dressing having an interior configured to cover or enclose an exterior portion of a patient's body. The inlet of the regulator is connected to the gas cylinder. The interior of the wound dressing is connected to the outlet of the regulator. The portable topical oxygen therapy system is sized and configured to be wearable by the patient without interfering with normal ambulation.
摘要:
A portable, self-contained device is described for the topical application of oxygen and the removal of wound exudates to promote the healing of skin wounds. The device includes a wound dressing that incorporates at least one electrochemical cell for generating oxygen. The device can regulate the supply of oxygen to the wound at various concentrations, pressures and dosages and is used to produce a high concentration of oxygen at the wound site. By reversing the polarity of the power source a reduced pressure can be created in a reservoir attached to our device. The reduced pressure in the reservoir draws naturally flowing exudates away from the wound. Alternately, two reverse polarity cells are used to alternately supply oxygen and draw away exudates.
摘要:
A portable, self-contained device is described for the topical application of oxygen and the removal of wound exudates to promote the healing of skin wounds. The device includes a wound dressing that incorporates at least one electrochemical cell for generating oxygen. The device can regulate the supply of oxygen to the wound at various concentrations, pressures and dosages and is used to produce a high concentration of oxygen at the wound site. By reversing the polarity of the power source a reduced pressure can be created in a reservoir attached to our device. The reduced pressure in the reservoir draws naturally flowing exudates away from the wound. Alternately, two reverse polarity cells are used to alternately supply oxygen and draw away exudates.
摘要:
An electrode (10, 112) containing platinum has its surface modified with sulfur, tellurium, or selenium, or compounds thereof, which renders the surface highly selective for the conversion of oxygen to hydrogen peroxide. The high selectivity of the electrode, and its ability to function in acidic electrolytes make it suitable to a variety of electrochemical processes. In a preferred embodiment, an oxygen concentration device (A) incorporating the electrode as a cathode (10) also includes an anode (12) and a selective membrane (14), formed from a solid polymer electrolyte material, between the anode and the cathode. An oxygen-containing atmosphere is brought into contact with the cathode where it is converted to hydrogen peroxide. The hydrogen peroxide passes through the membrane to the anode where it is reconverted to purified oxygen.