摘要:
A flow body flow meter includes a flow body and a sensor having one or more probes in the flow body. As a wet gas stream enters the flow body, an internal passage imparts angular momentum to the stream to induce a rotating flow. The wet gas stream at least intermittently carries liquid phase particles and the inertia of the denser liquid phase particles separates them from the rotating flow. The probes of the sensor are located in a part of the rotating flow that is free of any liquid phase particles. The internal passage may include an axial swirler and a cylindrical section downstream from the axial swirler. The axial swirler imparts the nonlinear motion to the stream, and tips of the probes are located near a center axis of the cylindrical section so they are free of any liquid phase particles.
摘要:
A flow body flow meter includes a flow body, a heater, and a sensor. The flow body includes an inlet, an outlet, and an internal passage coupling the inlet and the outlet. The heater evaporates at least some liquid droplets in a stream received by the flow body. The sensor has one or more sensor probes in the flow body to measure a fluid property of the stream.
摘要:
A flow body flow meter includes a flow body and a sensor having one or more probes in the flow body. As a wet gas stream enters the flow body, an internal passage imparts angular momentum to the stream to induce a rotating flow. The wet gas stream at least intermittently carries liquid phase particles and the inertia of the denser liquid phase particles separates them from the rotating flow. The probes of the sensor are located in a part of the rotating flow that is free of any liquid phase particles. The internal passage may include an axial swirler and a cylindrical section downstream from the axial swirler. The axial swirler imparts the nonlinear motion to the stream, and tips of the probes are located near a center axis of the cylindrical section so they are free of any liquid phase particles.
摘要:
A flow body flow meter includes a flow body, a heater, and a sensor. The flow body includes an inlet, an outlet, and an internal passage coupling the inlet and the outlet. The heater evaporates at least some liquid droplets in a stream received by the flow body. The sensor has one or more sensor probes in the flow body to measure a fluid property of the stream.
摘要:
Described here are systems and methods for controlling IC engines. In one aspect, a method for controlling a fuel processor is provided, the method including i) determining a temperature of an exhaust flow to the fuel processor, the fuel processor including a fuel processor catalyst; ii) determining a concentration of O2 in the exhaust flow upstream of the fuel processor catalyst; iii) determining a rate of the exhaust flow; and iv) adjusting a fuel flow rate to the fuel processor based on i), ii), iii) and a heat capacity value associated with the fuel processor. In other aspects, a system comprising logic operable to control a fuel processor is provided.
摘要:
This invention is a graded catalyst comprising palladium and also a partial combustion process in which the fuel is partially combusted using that catalyst. The catalyst utilizes a catalytic support structure suitable for high flow rates of combustible gas mixtures through it. The catalyst is situated on the support so that in the flowing gas stream a leading portion of the support has a higher combustion activity, such as by a higher concentration of catalytic metal, than has the trailing portion. The combination of graded catalyst and support provides a low "light off" temperature for the combustible gas (only a low preheat temperature is needed to cause the combustion reaction to begin) and yet does not cause "hot spots" to occur because of excess activity. The combustion gas produced by the catalytic process may be at a temperature below the adiabatic combustive temperature, may be used at that temperature, or fed to other combustion stages for further use in a gas turbine, furnace, boiler, or the like.
摘要:
This invention is a graded catalyst comprising palladium and also a partial combustion process in which the fuel is partially combusted using that catalyst. The catalyst utilizes a catalytic support structure suitable for high flow rates of combustible gas mixtures through it. The catalyst is situated on the support so that in the flowing gas stream a leading portion of the support has a higher combustion activity, such as by a higher concentration of catalytic metal, than has the trailing portion. The combination of graded catalyst and support provides a low "light off" temperature for the combustible gas (only a low preheat temperature is needed to cause the combustion reaction to begin) and yet does not cause "hot spots" to occur because of excess activity. The combustion gas produced by the catalytic process may be at a temperature below the adiabatic combustive temperature, may be used at that temperature, or fed to other combustion stages for further use in a gas turbine, furnace, boiler, or the like.
摘要:
This invention is a comparatively high pressure combustion process having a two stages in which a fuel is stepwise combusted using specific catalysts and catalytic structures and, optionally, having a final homogeneous combustion zone. The choice of catalysts and the use of specific structures, including those employing integral heat exchange, results in an overall catalyst structure which is stable due to its comparatively low temperature. The product combustion gas is at a temperature suitable for use in a gas turbine, furnace, boiler, or the like, but has low NO.sub.x content.
摘要:
This invention relates to an electrically-heated catalyst (EHC) and a start-up method of a gas turbine engine for combusting a hydrocarbonaceous fuel/oxygen-containing gas mixture using this electrically-heated catalyst. The catalytic structure is electrically heated to a predetermined temperature prior to start up of the turbine so as to reduce emissions during the start-up of the system. The EHC unit is a stacked or spirally wound layering of flat and corrugated thin metal foils which forms a plurality of axially-extending, longitudinal channels. The channels are preferably coated on one surface with a catalytic material, leaving the other surface free from the reaction to act as a heat sink, making the design an IHE (integral heat exchange) catalytic unit. The preferred embodiment of the EHC has electrodes outside of the fuel/oxygen-containing mixture stream, and uses electrical power having a predetermined voltage in the range of 100 to 200 volts to heat the unit. A method for using the EHC in the start-up of a gas turbine is also disclosed wherein an electrical power is applied to heat the EHC a predetermined temperature prior to the fuel/oxygen-containing mixture being introduced and may be left on for a certain period of time after the introduction of the fuel/oxygen-containing mixture. The EHC may be maintained at the desired predetermined temperature by modulating the applied voltage. The electrical power is terminated when any one of several conditions are met including when the heat of the catalytic reaction is sufficient to maintain the catalyst at its steady-state condition or when a certain period of time has elapsed.
摘要:
This invention is an improved catalyst structure and its use in highly exothermic processes like catalytic combustion. This improved catalyst structure employs integral heat exchange in an array of longitudinally disposed adjacent reaction passage-ways or channels, which are either catalyst-coated or catalyst-free, wherein the configuration of the catalyst-coated channels differs from the non-catalyst channels such that, when applied in exothermic reaction processes, such as catalytic combustion, the desired reaction is promoted in the catalytic channels and substantially limited in the non-catalyst channels. The invention further comprises an improved reaction system and process for combustion of a fuel wherein catalytic combustion using a catalyst structure employing integral heat exchange, preferably the improved structures of the invention, affords a partially-combusted, gaseous product which is passed to a homogeneous combustion zone where complete combustion is promoted by means of a flameholder.