摘要:
A battery pack dehumidifier system for controlling the relative humidity within a battery pack enclosure is provided, the dehumidifier system including a desiccant that absorbs/adsorbs water vapor from the battery pack enclosure. The system heats and reactivates the desiccant at predetermined time intervals or when the humidity within the system reaches a preset level, thereby allowing the desiccant to regain its potential for absorbing/adsorbing water vapor.
摘要:
A battery pack dehumidifier system for controlling the relative humidity within a battery pack enclosure is provided, the dehumidifier system including a desiccant that absorbs/adsorbs water vapor from the battery pack enclosure. The system heats and reactivates the desiccant at predetermined time intervals or when the humidity within the system reaches a preset level, thereby allowing the desiccant to regain its potential for absorbing/adsorbing water vapor.
摘要:
A method for controlling the relative humidity within a battery pack enclosure is provided in which the volume of air within the battery pack is exposed to a volume of desiccant contained within a desiccant enclosure. The system is configured to heat and reactivate the desiccant at predetermined time intervals or when the humidity within the system reaches a preset level, thereby allowing the desiccant to regain its potential for absorbing/adsorbing water vapor.
摘要:
A cooling manifold assembly for use in a battery pack thermal management system is provided. The cooling manifold assembly includes a coolant tube that is interposed between at least a first row of cells and a second row of cells, where the first and second rows of cells are adjacent and preferably offset from one another. A thermal interface layer is attached to the cooling tube, the thermal interface layer including a plurality of pliable fingers that extend away from the cooling tube and are interposed between the cooling tube and the first row of cells, and interposed between the cooling tube and the second row of cells, where the pliable fingers are deflected by, and in thermal contact with, the cells of the first and second rows of cells.
摘要:
A thermal management system is provided that minimizes the effects of thermal runaway within a battery pack. The system is comprised of a sealed battery pack enclosure configured to hold a plurality of batteries, where the battery pack enclosure is divided into a plurality of sealed battery pack compartments. The system also includes a plurality of battery venting assemblies, where at least one battery venting assembly is integrated into each of the sealed battery pack compartments, and where each of the battery venting assemblies includes an exhaust port integrated into an outer wall of the battery pack compartment and a valve, the valve being configured to seal the exhaust port under normal operating conditions and to unseal the exhaust port when at least one of the batteries within the battery pack compartment enters into thermal runaway.
摘要:
A cooling manifold assembly for use in a battery pack thermal management system is provided. The cooling manifold assembly includes a coolant tube that is interposed between at least a first row of cells and a second row of cells, where the first and second rows of cells are adjacent and preferably offset from one another. A thermal interface layer is attached to the cooling tube, the thermal interface layer including a plurality of pliable fingers that extend away from the cooling tube and are interposed between the cooling tube and the first row of cells, and interposed between the cooling tube and the second row of cells, where the pliable fingers are deflected by, and in thermal contact with, the cells of the first and second rows of cells.
摘要:
A method of determining a respiratory parameter for a subject using an indirect calorimeter is provided. The indirect calorimeter includes a respiratory connector for passing inhaled and exhaled gases, a flow pathway operable to receive and pass inhaled and exhaled gases having a flow tube within the flow pathway through which the inhaled and exhaled gases pass, a flow meter for determining an instantaneous flow volume of the inhaled and exhaled gases, a component gas concentration sensor for determining an instantaneous fraction of a predetermined component gas and a computation unit having a processor and a memory. The method includes the steps of initializing the indirect calorimeter and the subject breathing into the respiratory connector if the indirect calorimeter is initialized, sensing the flow volume of the inhaled and exhaled gases passing through the flow pathway using the flow meter and transmitting a signal representing the sensed flow volume to the computation unit. The method also includes the steps of sensing a concentration of a predetermined component gas as the inhaled and exhaled gases pass through the flow pathway using the component gas sensor, and transmitting a signal representing the sensed concentration of the predetermined component gas to the computation unit. The method further includes the steps of calculating at least one respiratory parameter for the subject as the subject breathes through the calorimeter using the sensed flow volume and the sensed concentration of the predetermined component gas, and providing the subject with the at least one respiratory parameter.
摘要:
An indirect calorimeter for measuring the metabolic rate of a subject includes a disposable portion and a reusable portion. The disposable portion includes a respiratory connector configured to be supported in contact with the subject so as to pass inhaled and exhaled gases as the subject breathes. The disposable portion also includes a flow pathway operable to receive and pass inhaled and exhaled gases, having a first end in fluid communication with the respiratory connector and a second end in fluid communication with a source and sink for respiratory gases. The disposable portion is disposed within the reusable portion, which includes a flow meter, a component gas concentration sensor, and a computation unit. The flow meter generates a signal as a function of the instantaneous flow volume of respiratory gases passing through the flow pathway and the component gas concentration sensor generates a signal as a function of the instantaneous fraction of a predetermined component gas in the exhaled gases. The computation unit receives the electrical signals from the flow meter and the concentration sensor and calculates at least one respiratory parameter for the subject as the subject breathes through the calorimeter.
摘要:
A battery coolant jacket for use with a plurality of cells is provided, the jacket comprised of a hollow enclosure configured to permit a liquid coolant to flow through the enclosure, entering via a coolant inlet and exiting via a coolant outlet; a plurality of cell apertures that extend completely through the hollow enclosure, where each cell aperture is sized to fit a cell; and a plurality of coolant segregation walls that are integrated into the hollow enclosure and separate the cells into groups of cells, and where each coolant segregation wall forms a barrier between the cell group contained within that coolant segregation wall and the liquid coolant flowing through the hollow enclosure. The coolant jacket may include at least one flow control wall integrated within the hollow enclosure that controls the coolant flow pathway between the enclosure's coolant inlet and outlet, for example causing the coolant flow pathway to alternate directions between adjacent cell groups.
摘要:
A thermal management system is provided that minimizes the effects of thermal runaway within a battery pack. The system is comprised of a sealed battery pack enclosure configured to hold a plurality of batteries, where the battery pack enclosure is divided into a plurality of sealed battery pack compartments. The system also includes a plurality of battery venting assemblies, where at least one battery venting assembly is integrated into each of the sealed battery pack compartments, and where each of the battery venting assemblies includes an exhaust port integrated into an outer wall of the battery pack compartment and a valve, the valve being configured to seal the exhaust port under normal operating conditions and to unseal the exhaust port when at least one of the batteries within the battery pack compartment enters into thermal runaway.