摘要:
A system and method are provided for fragmenting a crystalline lens, to facilitate its removal from the lens bag during an ophthalmic laser surgery. First, a predetermined pattern is used to make Laser Induced Optical Breakdown (LIOB) cuts that section the lens into asymmetrical, operational segments. At least one operational segment is then selected and softened with a plurality of compact LIOB cuts. Once softened, the selected segment is aspirated. The remaining operational segments are then subsequently removed. During a procedure, an imaging unit can monitor movements of the lens bag to ensure proper placement of the LIOB cuts on the lens.
摘要:
A system and method for performing a femto-fragmentation procedure on tissue in the crystalline lens of an eye requires that a laser beam be directed and focused to a focal point in the crystalline lens of the eye. The focal point is then guided, relative to an axis defined by the eye, to create a segment cluster by causing Laser Induced Optical Breakdown (LIOB) of tissue in the crystalline lens. The resultant segment cluster includes a plurality of contiguous, elongated segments in the crystalline lens that are individually tapered from an anterior end-area to a posterior end-area. Specifically, this is done to facilitate the removal of individual segments from the segment cluster in the crystalline lens.
摘要:
A system and method are provided for fragmenting a crystalline lens, to facilitate its removal from the lens bag during an ophthalmic laser surgery. First, a predetermined pattern is used to make Laser Induced Optical Breakdown (LIOB) cuts that section the lens into asymmetrical, operational segments. At least one operational segment is then selected and softened with a plurality of compact LIOB cuts. Once softened, the selected segment is aspirated. The remaining operational segments are then subsequently removed. During a procedure, an imaging unit can monitor movements of the lens bag to ensure proper placement of the LIOB cuts on the lens.
摘要:
A system and method are provided for combining the imaging capabilities of an Optical Coherence Tomography (OCT) device with the calculated results of ray tracing techniques. The combination is then used to derive a predictive refractive outcome for an optical model. The resultant optical model includes diopter power and size information for use in preoperative planning (e.g. a capsulotomy) and/or for the manufacture of an Intraocular Lens (IOL).
摘要:
A system and method are provided wherein an operational characteristic of a laser beam is identified. A predetermined ophthalmic reference datum is also identified. The identified laser beam characteristic is then used in its relationship with the reference datum for guidance and control of the laser beam's focal point. In operation, the laser beam's focal point is moved through eye tissue while minimizing any deviations of the operational characteristic of the laser beam from the reference datum.
摘要:
A system, apparatus, and method may provide laser beams of two or more wavelengths from diode pumped solid-state laser sources (220, 222, 224). The beam paths of these laser beams with different wavelengths, which are generated by the laser sources (220, 222, 224), may be aligned along a common optical axis 280 by an optical configuration, to treat at least one target area. Frequency-doubled laser beams, output from a plurality of diode pumped solid state laser cavities, may be passed through fold mirrors (M2, M5, M8), and combined on a common optical axis 280, using one or more combiner mirrors (M10, M11, M12), to unify the beam paths. Selected laser beams may be delivered to a target using one or more delivery systems.
摘要:
A system and method are disclosed for using a laser unit to treat a crystalline lens (or lens capsule) to compensate for any tilt angle “φ” there may be between a lens axis and an operational axis of the laser unit (i.e. “z” axis). To begin, a contiguous sequence of procedure paths that collectively define the boundary surface of a lens volume are identified, with each procedure path inclined by the tilt angle “φ”. A slice occurs in an x-y plane that is on the boundary surface of the volume of lens and includes portions of several procedure paths. The slices are projected into the x-y plane where they are sequenced for use as trace paths for the laser unit. The trace paths are used to guide a laser beam to perform LIOB along the slice for the different values of “z” to incise the boundary surface.
摘要:
A system and its method for creating a microchannel in the trabecular meshwork of an eye include a laser unit for generating a laser beam, and an imaging unit for creating an image of the trabecular meshwork. The system also includes a computer which defines the microchannel. A comparator that is connected with the computer then controls the laser unit to move the focal point of the laser beam. This focal point movement is accomplished to create the microchannel, while minimizing deviations of the focal point from the defined microchannel.