Abstract:
Alignment of layers during manufacture of a multi-layer sample is controlled by applying optical measurements to a measurement site in the sample. The measurement site includes two diffractive structures located one above the other in two different layers, respectively. The optical measurements include at least two measurements with different polarization states of incident light, each measurement including illuminating the measurement site so as to illuminate one of the diffractive structures through the other. The diffraction properties of the measurement site are indicative of a lateral shift between the diffractive structures. The diffraction properties detected are analyzed for the different polarization states of the incident light to determine an existing lateral shift between the layers.
Abstract:
An optical system for use in measurements in a sample comprising a light source (102) operable to produce an incident light beam propagating in a certain direction towards the sample (S) through an illumination channel (IC), a detector unit (104) for collecting light coming from the sample through a detection channel (DC), and generating data indicative of the collected light, a light directing assembly (106) operable to direct the incident beam onto a certain location on the sample's plane with a plurality of incident angles, and to direct light returned from the illuminated location to the detector unit (104), the light directing assembly (106) comprising a plurality of beam deflector elements (108 A-D), at least one of the deflector elements being movable and position of said at least one movable deflector element defining one of the selected incident angles.
Abstract:
Photovoltaic thin film quality control is obtained where the thin film is supported by a support and a section of the film is illuminated by a polychromatic or monochromatic illumination source. The illumination is positioned in certain locations including locations where the layer stack includes a reduced number of thin film layers. Such locations may be discrete sampled points located within scribe lines, contact frames or dedicated measurement targets. The light collected from such discrete sampled points is transferred to a photo-sensitive sensor through an optical switch. The spectral signal of the light reflected, transmitted or scattered by the sampled points is collected by the sensor and processed by a controller in such a way that parameters of simplified stacks are used for accurate determination of desired parameters of the full cell stack. In this way the photovoltaic thin film parameters applicable to the quality control are derived e.g. thin film thickness, index of refraction, extinction coefficient, absorption coefficient, energy gap, conductivity, crystallinity, surface roughness, crystal phase, material composition and photoluminescence spectrum and intensity. Manufacturing equipment parameters influencing the material properties may be changed to provide a uniform thin film layer with pre-defined properties.
Abstract:
A method is presented for optical control of the quality of a process of chemical mechanical planarization (CMP) performed by a polishing tool applied to an article having a patterned area. The article contains a plurality of stacks each formed by a plurality of different layers, thereby defining a pattern in the form of spaced-apart metal regions. The method is capable of locating at least one of residues, erosion and dishing conditions on the article. At least one predetermined site on the article is selected for control. This at least one predetermined site is illuminated, and spectral characteristics of light components reflected from this location are detected. Data representative of the detected light components is analyzed for determining at least one parameter of the article within the at least one illuminated site.
Abstract:
Alignment of layers during manufacture of a multi-layer sample is controlled by applying optical measurements to a measurement site in the sample. The measurement site includes two diffractive structures located one above the other in two different layers, respectively. The optical measurements comprise at least two measurements with different polarization states of incident light, each measurement including illuminating eh measurement site so as to illuminate one of the diffractive structures through the other. The diffraction properties of the measurement site are indicative of a lateral shift between eth diffractive structures. The diffraction properties detected are analyzed for the different polarization states of the incident light to determine an existing lateral shift between the layers.
Abstract:
Alignment of layers during manufacture of a multi-layer sample is controlled by applying optical measurements to a measurement site in the sample. The measurement site includes two diffractive structures located one above the other in two different layers, respectively. The optical measurements comprise at least two measurements with different polarization states of incident light, each measurement including illuminating eh measurement site so as to illuminate one of the diffractive structures through the other. The diffraction properties of the measurement site are indicative of a lateral shift between eth diffractive structures. The diffraction properties detected are analyzed for the different polarization states of the incident light to determine an existing lateral shift between the layers.
Abstract:
A method for measuring at least one desired parameter of a patterned structure having a plurality of features defined by a certain process of its manufacturing. The structure represents a grid having at least one cycle formed of at least two locally adjacent elements having different optical properties in respect of an incident radiation. An optical model, based on at least some of the features of the structure is provided. The model is capable of determining theoretical data representative of photometric intensities of light components of different wavelengths specularly reflected from the structure and of calculating said at least one desired parameter of the structure. A measurement area, which is substantially larger than a surface area of the structure defined by the grid cycle, is illuminated by an incident radiation of a preset substantially wide wavelength range. Light component substantially specularly reflected from the measurement area is detected and measured data representative of photometric intensities of each wavelength within the wavelength range is obtained. The measured and theoretical data are analyzed and the optical model is optimized until the theoretical data satisfies a predetermined condition. Upon detecting that the predetermined condition is satisfied, said at least one parameter of the structure is calculated.
Abstract:
Alignment of layers during manufacture of a multi-layer sample is controlled by applying optical measurements to a measurement site in the sample. The measurement site includes two diffractive structures located one above the other in two different layers, respectively. The optical measurements include at least two measurements with different polarization states of incident light, each measurement including illuminating the measurement site so as to illuminate one of the diffractive structures through the other. The diffraction properties of the measurement site are indicative of a lateral shift between the diffractive structures. The diffraction properties detected are analyzed for the different polarization states of the incident light to determine an existing lateral shift between the layers.
Abstract:
An optical system for use in measurements in a sample comprising a light source (102) operable to produce an incident light beam propagating in a certain direction towards the sample (S) through an illumination channel (IC), a detector unit (104) for collecting light coming from the sample through a detection channel (DC), and generating data indicative of the collected light, a light directing assembly (106) operable to direct the incident beam onto a certain location on the sample's plane with a plurality of incident angles, and to direct light returned from the illuminated location to the detector unit (104), the light directing assembly (106) comprising a plurality of beam deflector elements (108 A-D), at least one of the deflector elements being movable and position of said at least one movable deflector element defining one of the selected incident angles.
Abstract:
The method for controlling layers alignment in a multi-layer sample (10), such a semiconductors wafer based on detecting a diffraction efficiency of radiation diffracted from the patterned structures (12, 14) located one above the other in two different layers of the sample.