摘要:
A process for purifying 1,3-propanediol from the fermentation broth of a cultured E. coli that has been bioengineered to synthesize 1,3-propanediol from sugar is provided. The basic process entails filtration, ion exchange and distillation of the fermentation broth product stream, preferably including chemical reduction of the product during the distillation procedure. Also provided are highly purified compositions of 1,3-propanediol.
摘要:
A process for purifying 1,3-propanediol from the fermentation broth of a cultured E. coli that has been bioengineered to synthesize 1,3-propanediol from sugar is provided. The basic process entails filtration, ion exchange and distillation of the fermentation broth product stream, preferably including chemical reduction of the product during the distillation procedure. Also provided are highly purified compositions of 1,3-propanediol.
摘要:
A process for purifying 1,3-propanediol from the fermentation broth of a cultured E. coil that has been bioengineered to synthesize 1,3-propanediol from sugar is provided. The basic process entails filtration, ion exchange and distillation of the fermentation broth product stream, preferably including chemical reduction of the product during the distillation procedure. Also provided are highly purified compositions of 1,3-propanediol.
摘要:
A process for purifying 1,3-propanediol from the fermentation broth of a cultured E. coli that has been bioengineered to synthesize 1,3-propanediol from sugar is provided. The basic process entails filtration, ion exchange and distillation of the fermentation broth product stream, preferably including chemical reduction of the product during the distillation procedure. Also provided are highly purified compositions of 1,3-propanediol.
摘要:
Processes are disclosed for the purification and recovery of polysaccharide gums from an aqueous solution, particularly xanthan gum from a fermentation broth. An aqueous solution of at least one polysaccharide gum is mixed with a non-solvent stream comprising water and a subprecipitant level of a non-solvent of the polysaccharide gum. The mixture is concentrated to increase the polysaccharide gum concentration, and optionally undergoes a heat treatment. Additional non-solvent is added to the concentrated mixture to precipitate the polysaccharide gum. The precipitated gum is dried after being separated from the liquid component of the mixture. The removed liquid component can be recycled to the earlier step in the process in which the polysaccharide gum solution is mixed with the non-solvent stream.
摘要:
A method for producing anhydrous crystalline fructose by crystallizing from solution is provided. A highly supersaturated aqueous solution of fructose is added to a heel of crystalline fructose and dry seed. The temperature of the solution is then lowered to crystallize fructose from the solution to form a massecuite. The massecuite is divided into a product portion and a heel portion, the product portion being treated to isolated crystalline fructose which is then classified into product cuts on the basis of particle size of the fructose crystals, each product cut having a substantially typical particle size distribution.
摘要:
A food product comprises an oligosaccharide composition that is digestion resistant or slowly digestible. The oligosaccharide composition can be produced by a process that comprises producing an aqueous composition that comprises at least one oligosaccharide and at least one monosaccharide by saccharification of starch, membrane filtering the aqueous composition to form a monosaccharide-rich stream and an oligosaccharide-rich stream, and recovering the oligosaccharide-rich stream. Alternatively, the oligosaccharide composition can be produced by a process that comprises heating an aqueous feed composition that comprises at least one monosaccharide or linear saccharide oligomer, and that has a solids concentration of at least about 70% by weight, to a temperature of at least about 40° C., and contacting the feed composition with at least one catalyst that accelerates the rate of cleavage or formation of glucosyl bonds for a time sufficient to cause formation of non-linear saccharide oligomers, wherein a product composition is produced that contains a higher concentration of non-linear saccharide oligomers than linear saccharide oligomers.
摘要:
Processes are disclosed for the purification and recovery of polysaccharide gums from an aqueous solution, particularly xanthan gum from a fermentation broth. An aqueous solution of at least one polysaccharide gum is mixed with a non-solvent stream comprising water and a subprecipitant level of a non-solvent of the polysaccharide gum. The mixture is concentrated to increase the polysaccharide gum concentration, and optionally undergoes a heat treatment. Additional non-solvent is added to the concentrated mixture to precipitate the polysaccharide gum. The precipitated gum is dried after being separated from the liquid component of the mixture. The removed liquid component can be recycled to the earlier step in the process in which the polysaccharide gum solution is mixed with the non-solvent stream.
摘要:
A process for preparing saccharide oligomers uses an aqueous feed composition that comprises at least one monosaccharide or linear saccharide oligomer, and has a solids concentration of at least about 70% by weight. The feed composition is heated to a temperature of at least about 40° C., and is contacted with at least one catalyst that accelerates the rate of cleavage or formation of glucosyl bonds, such as enzyme or acid, for a time sufficient to cause formation of non-linear saccharide oligomers. A product composition is produced that contains a higher concentration of non-linear saccharide oligomers than linear saccharide oligomers.
摘要:
A process for preparing saccharide oligomers uses an aqueous feed composition that comprises at least one monosaccharide or linear saccharide oligomer, and has a solids concentration of at least about 70% by weight. The feed composition is heated to a temperature of at least about 40° C., and is contacted with at least one catalyst that accelerates the rate of cleavage or formation of glucosyl bonds, such as enzyme or acid, for a time sufficient to cause formation of non-linear saccharide oligomers. A product composition is produced that contains a higher concentration of non-linear saccharide oligomers than linear saccharide oligomers.