Abstract:
A new magnetic RAM cell device is achieved. The device comprisese, first, a MTJ cell comprising a free layer and a pinned layer separated by a dielectric layer. A reading switch is coupled between the free layer and a reading line. A writing switch is coupled between a first end of the pinned layer and a first writing line. A second end of the pinned layer is coupled to a second writing line. Architectures using MRAM cells are disclosed.
Abstract:
A microelectronics device including a semiconductor device located at least partially over a substrate, a bombarded area located at least partially over the substrate and adjacent the semiconductor device, and a bombarded attenuator interposing the semiconductor device and the bombarded area.
Abstract:
A multilevel reference generator has a plurality of nonlinear standard resistive elements where each resistive element is biased at a constant level to develop a resultant level. The multilevel reference generator has a plurality of mirror sources. Each mirror source is in communication with the one of the plurality of resistive elements such that each mirror source receives the resultant level from the one standard resistive element and provides a mirrored replication of the resultant level. The multilevel reference generator has a plurality of reference level combining circuits. The reference level combining circuit includes a resultant level summing circuit that additively combines the first and second mirrored replication level and a level scaling circuit to create a scaling of the combined first and second mirrored replication levels to create the reference level.
Abstract:
A new magnetic RAM cell device is achieved. The device comprises a MTJ cell comprising a free layer and a pinned layer separated by a dielectric layer. A diode is coupled between the free layer and a reading line. A writing switch is coupled between a first end of the pinned layer and a first writing line. A second end of the pinned layer is coupled to a second writing line. Architectures using MRAM cells are disclosed.
Abstract:
A phase change memory structure and method for forming the same, the method including providing a substrate comprising a conductive area; forming a spacer having a partially exposed sidewall region at an upper portion of the spacer defining a phase change memory element contact area; and, wherein the spacer bottom portion partially overlaps the conductive area. Both these two methods can reduce active area of a phase change memory element, therefore, reducing a required phase changing electrical current.
Abstract:
A semiconductor substrate includes semi-insulating portions beneath openings in a patterned hardmask film formed over a semiconductor substructure to a thickness sufficient to prevent charged particles from passing through the hardmask. The semi-insulating portions include charged particles and may extend deep into the semiconductor substrate and electrically insulate devices formed on opposed sides of the semi-insulating portions. The charged particles may advantageously be protons and further substrate portions covered by the patterned hardmask film are substantially free of the charged particles.
Abstract:
An improved magnetoresistive memory device has a reduced distance between the magnetic memory element and a conductive memory line used for writing to the magnetic memory element. The reduced distance is facilitated by forming the improved magnetoresistive memory device according to a method that includes forming a mask over the magnetoresistive memory element and forming an insulating layer over the mask layer, then removing portions of the insulating layer using a planarization process. A conductive via can then be formed in the mask layer, for example using a damascene process. The conductive memory line can then be formed over the mask layer and conductive via.
Abstract:
A non-destructive technique and related array for writing and reading magnetic memory cells, including sampling a first signal of a selected read line corresponding to select memory cells, applying a magnetic field to the select memory cells, sampling a second signal of the selected read line, and comparing the first and second signals to determine a logic state of the select memory cells.
Abstract:
A magnetoresistive magnetic data storage product and a method for fabrication thereof both employ a magnetic data storage device formed over a substrate. The magnetic data storage device comprises a free magnetoresistive material layer separated from a pinned magnetoresistive material layer by a dielectric spacer material layer, each having a sidewall. The magnetic data storage product also comprises a sidewall spacer material layer formed annularly surrounding and covering the sidewall of at least one of the free magnetoresistive material layer and the pinned magnetoresistive material layer. The magnetic data storage product is fabricated with enhanced magnetic data storage density.
Abstract:
A capacitor for use within a microelectronic product employs a first capacitor plate layer that includes a first series of horizontally separated and interconnected tines. A capacitor dielectric layer separates the first capacitor plate layer from a second capacitor plate layer. The second capacitor plate layer includes a second series of horizontally separated and interconnected tines horizontally interdigitated with the first series of horizontally separated and interconnected tines. The capacitor is formed employing a self-aligned method and the capacitor dielectric layer is formed in a serpentine shape.