Abstract:
Provided is an anisotropic conductive film manufacturing method capable of reducing manufacturing costs. Also provided is an anisotropic conductive film capable of suppressing the occurrence of conduction defects. The anisotropic conductive film manufacturing method includes: a holding step of supplying conductive particles having a plurality of particle diameters on a member having a plurality of opening parts, and holding the conductive particles in the opening parts; and a transfer step of transferring the conductive particles held in the opening parts to an adhesive film. In the particle diameter distribution graph (X-axis: particle diameter (μm), Y-axis: number of particles) of the conductive particles held in the opening parts, the shape of the graph is such that the slope is substantially infinite in a range at or above a maximum peak particle diameter.
Abstract:
An anisotropic conductive film manufacturing method capable of reducing manufacturing costs. Also, an anisotropic conductive film capable of suppressing the occurrence of conduction defects. The anisotropic conductive film manufacturing method includes: a holding step of supplying conductive particles having a plurality of particle diameters on a member having a plurality of opening parts, and holding the conductive particles in the opening parts; and a transfer step of transferring the conductive particles held in the opening parts to an adhesive film. In the particle diameter distribution graph (X-axis: particle diameter (μm), Y-axis: number of particles) of the conductive particles held in the opening parts, the shape of the graph is such that the slope is substantially infinite in a range at or above a maximum peak particle diameter.
Abstract:
To provide an insulating resin film, which contains: a first adhesive layer; and a second adhesive layer, wherein the insulating resin film is configured to bond a substrate and an electronic part together, and the first adhesive layer is provided at a side of the substrate and the second adhesive layer is provided at a side of the electronic part, wherein the first adhesive layer and the second adhesive layer each contain inorganic filler, wherein the second adhesive layer has a DSC exothermic peak temperature that is higher than a DSC exothermic peak temperature of the first adhesive layer, and wherein a thickness of the first adhesive layer is 50% to 90% of a total thickness of the insulating resin film.