摘要:
Disclosed is an asymmetric field effect transistor which comprises a first region serving as source, a second region serving as drain, a thin gate oxide and a gate electrode. The gate electrode is asymmetric and one of its sidewalls is sloped. The second region extends underneath said sloped sidewall. The part of said second region which extends underneath said gate electrode is less doped than the remaining part of said second region. Furthermore, said second region has a sloped junction edge underneath said gate electrode.
摘要:
A flash memory and a method of forming a flash memory, includes forming a polysilicon wordline on a substrate, the wordline having first and second sidewalls, the first sidewall being tapered, with respect to a surface of the substrate, to have a slope angle and the second sidewall having a slope angle greater than the slope angle of the first sidewall. Thereafter, a polysilicon spacer is formed on the second sidewall while simultaneously removing the polysilicon on the first sidewall. The polysilicon spacer forms a floating gate which is surrounded on a plurality of sides by the second sidewall.
摘要:
A flash memory and a method of forming a flash memory, includes forming a polysilicon wordline on a substrate, the wordline having first and second sidewalls, the first sidewall being tapered, with respect to a surface of the substrate, to have a slope angle and the second sidewall having a slope angle greater than the slope angle of the first sidewall. Thereafter, a polysilicon spacer is formed on the second sidewall while simultaneously removing the polysilicon on the first sidewall. The polysilicon spacer forms a floating gate which is surrounded on a plurality of sides by the second sidewall.
摘要:
A dual work function gate conductor with a self-aligned insulating cap and method for forming the same is provided. Two diffusion regions are formed in a substrate and a gate stack is formed over the substrate between the diffusion regions. The gate stack includes a gate insulating layer formed on the substrate and a layer of polysilicon on top of the gate insulating layer. The polysilicon layer may be doped n-type remain intrinsic. A barrier layer is formed on top of the polysilicon layer and a dopant source layer is formed on top of the barrier layer. The barrier layer contains a p-type dopant. The gate stack is enclosed by an insulating cap so that a diffusion contact can be formed borderless to the gate. Activation of the dopant source layer to dope a polysilicon layer can be delayed until a desired time.
摘要:
A method and structure for a field effect transistor structure for dynamic random access memory integrated circuit devices has a gate conductor, salicide regions positioned along sides of the gate conductor, a gate cap positioned above the gate conductor and at least one self-aligned contact adjacent the gate conductor.
摘要:
A method and structure for a field effect transistor structure for dynamic random access memory integrated circuit devices has a gate conductor, salicide regions positioned along sides of the gate conductor, a gate cap positioned above the gate conductor and at least one self-aligned contact adjacent the gate conductor.
摘要:
Semiconductor devices are fabricated in a strained layer region and strained layer-free region of the same substrate. A first semiconductor device, such as a memory cell, e.g. a deep trench storage cell, is formed in a strained layer-free region of the substrate. A strained layer region is selectively formed in the same substrate. A second semiconductor device (66, 68, 70), such as an FET, e.g. an MOSFET logic device, is formed in the strained layer region.
摘要:
The present invention provides an integrated circuit which comprises a substrate having a plurality of device regions formed therein, said plurality of device regions being electrically isolated from each other by shallow trench isolation (STI) regions and said plurality of device regions each having opposing edges abutting its corresponding STI region; selected ones of said devices regions having a preselected first device width such that an oxide layer formed thereon includes substantially thicker perimeter regions, along said opposing edges, compared to a thinner central region that does not abut its corresponding STI region; and selected other ones of the device regions having a preselected device width substantially narrower in width than the first device width such that an oxide layer formed thereon includes perimeter regions, along opposing edges, that abut each other over its central region thereby preventing formation of a corresponding thinner central region.
摘要:
The process rules for manufacturing semiconductor devices such as MOSFET's are modified to provide dual work-function doping following the customary gate sidewall oxidation step, greatly reducing thermal budget and boron penetration concerns. The concern of thermal budget is further significantly reduced by a device structure which allows a reduced gap aspect ratio while maintaining low sheet resistance values. A reduced gap aspect ratio also relaxes the need for highly reflowable dielectric materials and also facilitates the use of angled source-drain (S-D) and halo implants. Also provided is a novel structure and process for producing a MOSFET channel, lateral doping profile which suppresses short channel effects while providing low S-D junction capacitance and leakage, as well as immunity to hot-carrier effects. This also affords the potential for reduction in the contact stud-to-gate conductor capacitance, because borderless contacts can be formed with an oxide gate sidewall spacer. As a result, the S-D junctions can be doped independently of the gate conductor doping, more easily allowing a variety of MOSFET structures.
摘要:
A method of manufacturing a semiconductor device, in which the depth of a divot in a shallow trench isolation can be decreased. The method comprises forming a trench in a semiconductor substrate, for isolating elements, forming a nitride film on a surface of the trench, depositing mask material on an entire surface of the semiconductor substrate, filling the trench with the mask material, etching the mask material until a surface level of the mask material in the trench falls below the surface of the semiconductor substrate, removing an exposed upper portion of the nitride film on the surface of the trench, removing the mask material from the trench, filling the trench with element-isolating material, thereby forming an element-isolating region, and forming a transistor in an element region isolated from another element region by the element-isolating region.