摘要:
Embodiments of the present invention relate to a non-contact power transmission device, a magnetic induction-type power supply device, a magnetic induction-type power collector, and a moving object using same. Embodiments of the present invention provide a non-contact power transmission device, a magnetic induction-type power supply device, a magnetic induction-type power collector, and a moving object using same, the non-contact power transmission device comprising: a power collector having a power collector core, and a boob power collector cable that winds around the power collector core; and a power supply unit comprising a power supply core having a holder section and protrusions on the center portion of the holder section and around the perimeter of the holder section, and a power supply cable wound in such a manner that electric currents flow in two different directions with respect to the protruding center portion, wherein the power collector is located in the opposite direction from the protruding portion.
摘要:
One embodiment of the present invention discloses a feed line-compensated power transmission apparatus. One embodiment of the present invention, comprises: a feed line provided with horizontally elongated first and second lines and a third line for connecting one end of the first line to one end of the second line; a pair of compensation capacitors which are placed to face each other by connecting one end of the compensation capacitor to the other end of the first line and one end of the other compensation capacitor to the other end of the second line; an input power source for applying a high frequency power source by connecting both ends of the input power source to the other ends of the pair of compensation capacitors, respectively.
摘要:
A ferrite core structure for a power supply device of an electric vehicle is disclosed. The ferrite core module improves output and limits a reduction in strength due to warpage in a traveling direction of the vehicle to prevent cracks generated in a surface of an intermediate portion of a power supply road from occurring. The ferrite core structure includes: a plurality of horizontal core parts arranged spaced apart from each other; a plurality of first vertical core parts extending upward from both ends of the horizontal core parts; a second vertical core part having at least two rows extending upward from an intermediate portion of each of the horizontal core parts. The second vertical core part is arranged parallel to the first vertical core parts. A first support part connecting the plurality of first vertical core parts to each other to support the first vertical core parts.
摘要:
The present invention relates to a ferrite core structure for a power supply device of an electric vehicle which changes the structure of a ferrite core module according to a related art to improve output and limits a reduction in strength due to warpage in a traveling direction of the vehicle to prevent cracks generated in a surface of an intermediate portion of a power supply road from occurring. For this, the ferrite core structure for a power supply device of the electric vehicle includes: a plurality of horizontal core parts arranged spaced apart from each other to prevent a magnetic flux from leaking into the ground; a plurality of first vertical core parts extending upward from both ends of the horizontal core parts to prevent the magnetic flux from leaking into an outer surface; a second vertical core part having at least two rows extending upward from an intermediate portion of each of the horizontal core parts, the second vertical core part being arranged in a direction parallel to the first vertical core parts; and a first support part connecting the plurality of first vertical core parts to each other to support the first vertical core parts.
摘要:
The present invention relates to a modular electric-vehicle electricity supply device and an electrical wire arrangement method, and more particularly, to an electric-vehicle electricity supply device and electrical wire arrangement method which use a modular approach such that respective modules can be controlled so as to be either ON or OFF; in which a plurality of a magnets disposed at right angles to the direction of travel on a road area provided spaced at predetermined intervals in the direction of travel on the road, and which comprises electricity supply cores formed such that the widths at right angles to the direction of travel on the road are very narrow, and comprises electricity supply wires arranged such that the magnets of electricity supply cores which neighbor each other in the direction of travel on the road have different polarities.
摘要:
A power supply apparatus is for supplying power to an electric vehicle by a magnetic induction mechanism. The apparatus includes a power supply structure including a multiple number of power supply rail modules connected in a forward road direction, each power supply rail module including at least one power supply line passage elongated in the forward road direction, a power supply core of a lattice structure provided below the power supply line passage, and a concrete structure incorporating the power supply line passage and the power supply core; at least one power supply line accommodated in the power supply line passage in the forward road direction and surrounded by an insulating pipe; and at least one common line provided in the forward road direction and surrounded by an insulating pipe, for supplying power to the power supply apparatus.
摘要:
Provided is a method for designing a current supply device for wirelessly supplying power to a vehicle having a current collection device. In the design method, the gap between the two adjacent magnetic poles of the current supply device is received as input and then the gap between the current supply device and the current collection device is determined based on the gap between the two magnetic poles. Next, the magnitude of the power to be supplied to the current supply device is determined based on the value required with respect to the magnitude of the magnetic field and the gap between the current supply device and the current collection device. According to the design method, current supply device can easily be designed since various functional requirements are decoupled from each other.
摘要:
Disclosed are a full bridge inverter and method for controlling same. The full bridge converter according to the present invention comprises: a plurality of first switches connected at one end thereof to a positive terminal for a direct current (DC) input voltage; a plurality of second switches connected at one end thereof to a negative terminal for a DC input voltage; and a plurality of loads connected at connection terminals formed by one-on-one connections of the opposite ends of each first switch to the opposite ends of each second switch. Thus, in cases requiring the selective application of voltages converted from DC to AC to the plurality of loads, the number of semiconductor devices can be minimized to reduce costs, and a reduction in load current can be prevented.
摘要:
Provided is a method for designing a current supply device for wirelessly supplying power to a vehicle having a current collection device. In the design method, the gap between the two adjacent magnetic poles of the current supply device is received as input and then the gap between the current supply device and the current collection device is determined based on the gap between the two magnetic poles. Next, the magnitude of the power to be supplied to the current supply device is determined based on the value required with respect to the magnitude of the magnetic field and the gap between the current supply device and the current collection device. According to the design method, current supply device can easily be designed since various functional requirements are decoupled from each other.
摘要:
Provided are a method and system for handing over a mobile terminal between a macro base station and a vehicular base station to secure a communication service of a movable mobile terminal in a wireless communication system supporting a vehicular base station such as a vehicular relay station. The mobile terminal may be handed over by selecting a network or a vehicular base station suitable to a mobility and type of communication.