摘要:
A metal wiring layer and a method of fabricating the metal wiring layer are provided. The method includes forming a dielectric layer on a substrate, forming a plurality of dielectric layer patterns and holes therein on the substrate by etching part of the dielectric layer, with a cross sectional area of the holes in the dielectric layer patterns decreasing with increasing distance away from the substrate and the holes exposing the substrate, forming a trench by etching a portion of the substrate exposed through the holes in the dielectric layer patterns, and forming a metal layer which fills the trench and the holes in the dielectric layer patterns. Thus, it is possible to prevent the occurrence of an edge build-up phenomenon by forming a metal layer in a plurality of holes in the dielectric layer patterns having a cross sectional area decreasing with increasing distance away from the substrate. Therefore, it is possible to prevent the transmittance of a liquid crystal layer from decreasing due to a failure to properly fill liquid crystal molecules in the liquid crystal layer, and thus to increase the quality of display.
摘要:
A metal wiring layer and a method of fabricating the metal wiring layer are provided. The method includes forming a dielectric layer on a substrate, forming a plurality of dielectric layer patterns and holes therein on the substrate by etching part of the dielectric layer, with a cross sectional area of the holes in the dielectric layer patterns decreasing with increasing distance away from the substrate and the holes exposing the substrate, forming a trench by etching a portion of the substrate exposed through the holes in the dielectric layer patterns, and forming a metal layer which fills the trench and the holes in the dielectric layer patterns. Thus, it is possible to prevent the occurrence of an edge build-up phenomenon by forming a metal layer in a plurality of holes in the dielectric layer patterns having a cross sectional area decreasing with increasing distance away from the substrate. Therefore, it is possible to prevent the transmittance of a liquid crystal layer from decreasing due to a failure to properly fill liquid crystal molecules in the liquid crystal layer, and thus to increase the quality of display.
摘要:
The present invention relates to a substrate support that facilitates aligning a substrate and prevents the substrate from being damaged by arc discharge in processing a substrate using plasma, a substrate processing apparatus including the substrate support, and a method of aligning the substrate. A substrate support, which includes a main body on which a substrate is placed and a subsidiary body disposed around the side of the main body and having a slope declining from a position above the main body to the upper side of the main body, is provided, such that it is easy to align the substrate and it is possible to damage due to arc discharge in processing the substrate using plasma.
摘要:
In a display panel and a method of manufacturing the display panel, a gate line, a data line, and source and drain electrodes including a same material as the data line are formed on a substrate constituting the display panel, and the data line includes an aluminum based alloy containing sufficient nickel to inhibit corrosion during dry etching. The corrosion resistance of the AlNi-containing alloy helps prevent corrosion of the data line, the source electrode, and the drain electrode during selective dry etching that shapes these lines and electrodes.
摘要:
In a display panel and a method of manufacturing the display panel, a gate line, a data line, and source and drain electrodes including a same material as the data line are formed on a substrate constituting the display panel, and the data line includes an aluminum based alloy containing sufficient nickel to inhibit corrosion during dry etching. The corrosion resistance of the AlNi-containing alloy helps prevent corrosion of the data line, the source electrode, and the drain electrode during selective dry etching that shapes these lines and electrodes.
摘要:
Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
摘要:
Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
摘要:
A method of fabricating a thin film transistor includes forming a gate electrode on a substrate, forming a semiconductor layer on the gate electrode, forming a source electrode on the semiconductor layer, forming a drain electrode on the semiconductor layer spaced apart from the source electrode, forming a copper layer pattern on the source electrode and the drain electrode, exposing the copper layer pattern on the source electrode and the drain electrode to a fluorine-containing process gas to form a copper fluoride layer pattern thereon, and patterning the semiconductor layer.
摘要:
Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
摘要:
Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.